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ABSTRACT

Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluc-
tuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative
polarized light microscopy. These correlation functions are only physically meaningful if corrections are made
for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its
robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the
nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation
functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired
from liquid crystal physics.
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1. INTRODUCTION

The spindle is a highly dynamic assembly responsible for the proper segregation of the genetic material to
the daughter cells during cell division.1 Like many other sub-cellular structures, the spindle exists in a non-
equilibrium steady state, and requires a constant flux of energy and matter to maintain its shape.2 Understanding
the spindle is not only crucial for cell biology, but it also poses a fundamental challenge for physics since spindles
behave drastically differently from non-living materials that have traditionally been studied.

The body of the spindle is composed of rigid polymers, called microtubules, a number of proteins which
influence microtubule assembly and disassembly, motors and other proteins which cross-link and organize the
microtubules, and a variety of regulatory proteins.3 While many of the molecules that make up the spindle
are known, it is still unclear how these components work together to determine the morphology and behaviors
of the spindle. While ultimately it would be desirable to have a complete, microscopic theory of the spindle
and all its constituents, such a goal seems very distant at present. An alternative approach to understanding
the spindle is to attempt to formulate a phenomenological model, capable of capturing general features such as
spindle shape, size, or response to external perturbations by considering force balance, mass conservation, and
equations for relevant coarse grained fields. Similar approaches have been highly successful in studying non-living
soft materials, such as liquid crystals and membranes.4

Amongst all the components that form the spindle, microtubules are ultimately responsible for its mechan-
ical and structural properties. Therefore, microtubule density and orientation are good candidate fields for a
phenomenological theory describing the spindle. Previous theoretical studies have constructed hydrodynamic
descriptions of mixtures of motors and microtubules.5,6 Other works use a rather less coarse grained models in
which microtubules are considered as rigid rods moved by motors.7,8 However it is unclear if such simple descrip-
tions are relevant for understanding complex biological structures such as the spindle. In order to test if these
models are valid for the spindle, and more fundamentally, if there is even the possibility for a coarse grained
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description for the spindle in general, it is necessary to perform a detailed comparison between quantitative
experiments and theory.

Polarized light microscopy is a powerful tool for non-invasive observations of microtubule structure and
dynamics in spindles.9 Shinya Inoue, who performed the first thorough studies of spindles with polarized light,
was so struck by the characteristic flickering of spindle birefringence that he gave the phenomena its own name,
calling it ”the northern lights” after the fluctuations of the aurora borealis.10 These dynamics are still not
understood. We believe that an analysis of fluctuations in spindle birefringence will provide a means to test the
validity of coarse-grained theories, in analogy with previous studies of the flickering of red blood cells,11 where
measurements of correlation functions have led to deep insights into membrane physics.

In this paper, we present a method to measure fluctuations of microtubule orientations in spindles using
quantitative polarized light microscopy (LC-Polscope12). We provide a detailed description of registration algo-
rithms to correct for motions of the spindle during acquisition, the proper definition of the orientational order
parameter, and appropriate methods to compute the correlation functions.

2. MATERIALS AND METHODS

2.1 Spindle assembly from Xenopus Laevis Egg extracts and sample preparation

CSF-arrested egg extracts were prepared from Xenopus Laevis female oocytes. Cycled spindles were assembled
as described in.13,14 Briefly: demembrenated sperm and calcium where added to extracts, resulting in the
formation of nuclei. The reactions where then driven into metaphase by addition of metaphase-arrested extract,
and spindles formed after 1.5 hr at 18◦C .

For imaging, a small aliquot of extract (∼5 μl) was spread with a micropipette tip over an open chamber
made of a cutout metal slide and a 22 mm coverslip, and covered with mineral oil to prevent evaporation. The
chamber was mounted on an inverted microscopy equipped with an LC-Polscope.

2.2 Imaging

Imaging was performed with an LC-Polscope,12 which makes use of a liquid crystal based universal compensator
to generate light of defined ellipticity, a circular analyzer, and quantitative algorithms .12 For each pixel in an
image, the LC-Polscope measures the retardance - the sample birefringence integrated over the optical volume -
and the orientation of the optical slow axis. Sato et al.9 showed that the birefringence observed in the spindle is
caused by its microtubules. The measured retardance is determined by the number of microtubules in an optical
volume and their degree of alignment. The optical axis is the direction in which the microtubules are aligned.
For coarse-grained theories, the dynamics of the optical axis is particularly interesting because, in analogy with
liquid crystal theories, it is expected to be a slow variable relevant to the systems large scale dynamics.4 We
therefore focus on measuring correlations functions of the slow axis in spindles.

An image obtained with the LC-Polscope is shown in Fig. 1. In order to observe the temporal evolution
of a spindle, we acquired movies, typically five minutes long, by taking images every two seconds. During the
course of a movie the spindle moves around considerably, most likely due to convective flows in the chamber and
the action of motors incorporated on the surface of the coverslip, Fig. 2(A). When computing correlations, we
need to compare the same point in the spindle at different times, therefore a proper registration of the different
frames with respect to each other is crucial for the correct interpretation for the correlation functions. For the
rest of the paper, we will discuss an algorithm for the accurate registration of the spindle, and we will develop
an appropriate means of measuring the spatio-temporal correlation function of orientation fluctuations in the
spindles.

3. ALIGNMENT PROCEDURE

The registration of two images that are translated, rotated or scaled with respect to one another is a fundamental
problem in image acquisition and processing. There are several registration strategies in the literature which
include methods based on correlations, Fast Fourier Transform-based methods,15 and feature-based methods.16

The images we need to register are frames acquired at different times. Since consecutive frames are inevitably
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Figure 1. Spindle images obtained using the LC-Polscope.12 (A) retardance image, scale bar in nanometers. (B) orientation
image, scale bar in degrees.
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Figure 2. Result of the alignment algorithm. (A) Superposition of four frames of the raw data (at times 0, 48 seconds, 98
seconds, 149 seconds) in red, green, blue and grey associated colors. (B) Superposition of the same frames with the same
colors as in (A) after being aligned using the algorithm described in the text.



different, there cannot be a fully objective, absolute measure of alignment quality. The challenge is to find a
good registration algorithm and methods to estimate its accuracy.

There are two immediate candidates to use as alignment methods. One is a spindle shape based method.
Using the boundary of the spindle as a reference, we can find the orientation and translation of a frame with
respect to another reference frame (typically by means of an ellipsoidal fit and the computation of the center
of mass). Although intuitive and simple, this method performs poorly because the internal dynamics of the
spindle causes slight shape changes overtime, see Fig. 5. The resulting poorly aligned stacks inevitably show a
characteristic flickering, which corresponds to errors in the alignment of several pixels and degrees.

An alternative to this method is the use of a frame to frame bulk correlation method, with the hope that
even though fluctuations are significant, the internal features of the spindle are robust enough to provide an
accurate alignment. In most applications, registration approaches involve correlation of the full images. In our
case, we need to segment the image to prevent misalignment of the spindle by motions of vesicles and other
background features. This is achieved by a shape recognition algorithm, consisting of an image thresholding (see
paragraph below), which is used as a mask to compute the correlation only in the interior of the spindle. As
noted previously, the overall shape of the spindle changes overtime due to strong fluctuations in the boundary.
Moreover, we do not want any errors in determining the shape to propagate in the registration. As a consequence
we need to make sure that the correlations in our algorithm are computed in a fashion that is insensitive to the
changing of shape of the spindle, the particular method of obtaining its shape, and the shape overlap between
consecutive frames.
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Figure 3. Key steps in the registration algorithm. For each frame (A), we find its corresponding mask and center of mass
(B). The mask is used to filter the background. The image is then rotated by a set of discrete angles (−10 to 10 in steps of
0.5 deg), and correlated with the previous frame for every image translation (C). The maximum value of the correlation
for each angle is fitted to a spline and the angle that registers the two frames is obtained by finding maximum of the
fitted correlation (D).



3.1 Description of the algorithm

The result of the algorithm is a new stack of aligned frames. Starting from the second frame, each frame is
compared to its predecessor, and a displacement and rotation magnitude are stored. The images are only aligned
after the entire algorithm has completed. Updating the alignment for each frame directly after determining its ro-
tation and displacement magnitude would inevitably increase the registration error, since rotation and (subpixel)
translation of the spindle involves interpolation which would propagate to subsequent frames. Our registration
algorithm only uses the retardance images, which have a higher dynamical range and more pronounced internal
features than the orientation images.

Spindle mask. We obtain a mask for the spindle for each frame of the stack. A gamma adjustment of the
image followed by a filter averaging is used to enhance the contrast between the spindle and the background. An
overestimation of the spindle shape that includes bright features of the background is initially obtained by image
thresholding. A sequence of morphological operations, erosion followed by dilation, eliminates the remaining
small features of the background and softens the boundary of the spindle. For binary images, erosion sets a pixel
value to zero unless it is surrounded by a defined amount of ones, while dilation in a pixel of value one, sets the
value of a defined neighboring pixels to one. The result of these operations is illustrated in Fig. 3B. The mask
is multiplied by the image to filter the background prior to the correlation. We use the center of mass of the
spindle mask to set a default translation of each frame to be improved by the correlation method.

Correlation between frames. Computing correlations directly on the filtered images is problematic because
this procedure tends to maximize overlap of the masked regions, irrespective of their internal features, resulting
in the same poor alignment as the spindle shape based algorithm described above. Better performance can be
achieved by using distinctive internal features of the spindles, long-lived fluctuations in intensity or the presence
of structure and ordering in the microtubules (bundling), to register consecutive frames. Therefore, we align the
normalized fluctuations of the masked images instead of the masked images themselves,

δil = Ml · Il − 〈Il〉〈Il〉 , (1)

where l refers to the frame number, and the average is taken over the interior of the spindle defined by the mask
Ml. It is necessary to normalize the correlation of the fluctuations by the area of shape intersection, Fig. 3C, to
avoid bias due to the particular shape of the spindle or the algorithim for selecting the masked region. Using
Fast Fourier Transforms (FFT) to speed computation, we can define the correlation as a function of angle of
rotation θ and translation (lx, ly),

C(θ, lx, ly) =
F−1 [F [δil−1] · F ∗[R(δil, θ)]]

F−1 [F [Ml−1] · F ∗[R(Ml, θ)]]
, (2)

where R(δil, θ) is the rotation of the image δil by θ degrees, using cubic interpolation, and (lx, ly) ∈ N. In order
to find the maximum of the correlation as a function of translation and rotation, we discretize the angle θ from
−10 to 10 in increments of 0.5 degrees. For each θ, we find (lx, ly) that maximizes the correlation in Eq. 2, and
obtain a new correlation C(θ) that is a function of the rotation angle only. We find the angle θm that maximizes
the correlation by finding the local maxima of the spline-interpolant of C(θ), Fig. 3D. Finally, using the value
of the spindle orientation θm, we recalculate the correlation given by Eq. 2, and find the final translation (lx, ly)
that align the two frames. Once this procedure is finished for the entire stack of images, all frames are registered
at once. Since microtubules in the spindle are oriented on average along the spindle long axis, we add an offset
to the rotation angle for each frame rotation that sets the mean microtubule orientation with respect to the
horizontal of the image to 0. The result of the alignment procedure is illustrated in Fig. 2.
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Figure 4. Characterization of the robustness of the alignment algorithm. The absolute error (standard deviation) in
orientation (solid black, left axis), translation along the spindle long axis (blue, right axis), and translation along the
spindle short axis (right axis), is obtained by rotating, translating, and adding white gaussian noise with different variance
to an image. The range of rotation is (−8, 8), and the range of translations is (-10,10). Each point is obtained from 100
random rotations and translations, and displayed in a log log scale. In order to easily understand the magnitude of the
variance with respect to the intensity, the original image is rescaled to [01]. The alignment procedure is very robust for
variances up to 10−1, where the error increases by an other of magnitude. For reference, the noise added spindle images
for different variances are displayed in the right panel (A), (B), (C) and (D). An aligned spindle series has an equivalent
variance of 2 × 10−4, which is well into the robust region, corresponding to an orientation error of ∼ 0.2 deg (∼ 0.004
rad), and translation error of ∼ 0.1−0.3 pixels. Note that the error is larger along the spindle long axis, since the internal
structures along this direction are less pronounced and defined.

Error estimation. The resulting stack of images from the registration algorithm appears to be very well
aligned, Fig. 2, but it is desirable to have a more objective means to evaluate its performance. Unfortunately, as
discussed above, there is not an unambiguous criterion to determine the quality of alignment since each image
is different from the rest. One way to estimate the reliability of our algorithm is to try to register an image
with itself after a certain level of noise and an arbitrary rotation and translation are applied. In the absence
of information regarding the true statistics of variation between two consecutive images of the spindle, we use
Gaussian white noise as the source of variability.

We calculated the absolute error in registration while varying the variance of the Gaussian noise by seven
orders of magnitude and applying random rotations and translations (n=100 for each variance magnitude), Fig. 4.
Fig. 4 shows representative images of a spindle with different levels of added noise. The registration algorithm is
very robust for the three first spindles (A), (B) and (C). The absolute error is surprisingly small for at least five
orders of magnitude in the value of the variance, and corresponds to an orientation error of ∼ 0.2 deg (∼ 0.004
rad), and translation errors of less than half a pixel. Notice that the level of noise in spindle (C) is already very
large, and definitely an overestimate of the noise present in the real data. When the variance of the added noise
is raised further and surpasses a threshold level, 0.1 if the retardance of the image is normalized to lie between
0 and 1 (corresponding to (D)), the error increases an order of magnitude and the algorithm fails.

We estimate the equivalent noise level of our images by calculating the variance between consecutive frames
for an entire movie. We find that the variance of the oriented images is 2 × 10−4 (with retardance normalized
to lie between 0 and 1). Added Gaussian noise with this variance is well within the robust region, and would
result in an orientation error of ∼ 0.2 deg (∼ 0.004 rad), and translation error of ∼ 0.1 − 0.3 pixels. This
error estimation method suggests that our registration algorithm is quite accurate and can be safely used when
calculating correlation functions. However, it is important to emphasize that this only provides an estimate the
alignment error, since the real variation between consecutive images is not caused solely by Gaussian noise.
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Figure 5. Retardance fluctuations in the spindle. Series of four retardance images at different times (0, 64, 130 and 198
seconds) (A), showing high spatial inhomogeneities which change on time. In (B) profile plot of the spatial fluctuations
of images 1 (solid black) and 3 (solid red) corresponding to times 0 and 130 seconds respectively. Fluctuations over time
change dramatically and actually seem to be inverted over time.

4. CALCULATION OF CORRELATION FUNCTIONS

Once the spindle images are properly registered, we can start comparing retardance and orientation of different
points in the spindle at different times. There are massive fluctuations across space and time in both orientation
and retardance, Fig. 5. Calculating correlation functions of fluctuations provides a powerful way of characterizing
their behavior.17,18 In the following we discuss methods to estimate the correlation function of an arbitrary
process, and later on we will focus on the expression for the correlation of the fluctuations in microtubule
orientation.

Estimation of the correlation function. We define the non-normalized spatiotemporal correlation function
of a process A(x, y, t) as18

c(η, ξ, τ) = 〈δA(x, y, t)δA(x+ η, y + ξ, t+ τ)〉, (3)

where δA(x, y, t) is a fluctuation around the mean 〈A〉∗ at position (x, y) and time t. Since the sampling in any
experiment is finite, we can only obtain an estimate of the true correlation function. It is important to find a
good estimate that is as close as the real correlation as possible. We first discuss methods of estimating the
correlation function for a unidimensional process, following Percival and Walden.19 Once the method is defined,
generalization to any dimension is straightforward.

There are two immediate ways to estimate the correlation function. The most natural estimator, often called
the ”unbiased” estimator is defined as

cu(η) =
1

N − |η|
N−|η|∑
j=1

(A(j)− 〈A〉)(A(j + |η|)− 〈A〉), (4)

If the mean of the process 〈A〉 obtained from N sample values, is substituted by the true mean μ, the above
estimator is by definition an unbiased estimator. However, in most situations the true mean is unknown and an
estimate of μ is must be obtained by averaging over the finite realizations of A. In this case, cu is biased.

There is an alternative estimator of the correlation function called the ”biased” estimator,

cb(η) =
1

N

N−|η|∑
j=1

(A(j)− 〈A〉)(A(j + |η|)− 〈A〉). (5)

∗Depending on the process it might be convenient to normalize the correlation function.



The only difference between the above estimators is the multiplicative factor in front of the summation. The
magnitude of the bias on the later increases as |η| increases. In the literature the ”biased” estimator is preferred
to the ”unbiased” estimator. Here we will briefly motivate the reasons to use an estimator that is, by definition,
biased. In the majority of occasions, the mean of the process must be accessed by averaging a finite number of
samples, in which case both estimators are biased and in fact, the magnitude of the bias in cu can be greater
than in cb.

19 In order to illustrate the later statement, consider the case of a white noise process with unknown

mean μ and variance σ2 . It can be easily shown that for this case the magnitude of the bias for cu is −σ2

N ,

while for cb, the magnitude of the bias is −
(
1− |η|

N

)
σ2

N , the later being smaller for any lag η. More generally,

the variability in the ”unbiased” estimator is worse than the inherent bias in the ”biased” estimator. This effect
is particularly important for |η| approaching N where the variance of cu(N − 1) is N2 times the variance of
cb(N − 1).

For most physical processes of interest, c(η) → 0 as η → ∞. Although it is not a strong argument in favor
of the ”biased” estimator, this behavior is incorporated in it by definition. As an example, consider the nice
decaying behavior of the temporal decay of the peak of the correlation function of the alignment in the spindle
for the ”biased” estimator in Fig. 6 as compared to the ”unbiased” estimator whose amplitude for large time
lag is unphysically greater than the amplitude for time lag 0. Finally, only cb can calculated in terms of Fourier
transforms (see below), which dramatically speeds the computational time. For the rest of the paper, we will
use the generalization to higher dimensions of the ”biased” estimator in Eq. 5 to estimate our spatio-temporal
correlation function.

Correlation functions of physical processes are conveniently expressed in Fourier space. It can be shown that
for the ”biased” estimator (only),19

C(�q, t) =

Nx+1∑
η=−(Nx−1)

Ny+1∑
ξ=−(Ny−1)

c(η, ξ, t) exp(−i2πqxη) exp(−i2πqyξ)

=
1

Nt

Nt−τ∑
t=1

Re (F [δA(x, y, t)]F ∗ [δA(x, y, t+ τ)]) . (6)
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Figure 6. Comparison of the ”biased” and ”unbiased” estimators for the temporal decay of the peak of the correlation
function of the alignment in the spindle. The ”biased” estimator (blue curve) decays nicely to 0 as the lag increases, while
the ”unbiased” estimator shows unphysical behavior for large time lags.

Microtubule orientation order parameter. The images obtained with the LC-Polscope, Fig. 1, contain
information on the retardance and orientation of microtubules in the spindle. This technique cannot determine
the polarity of microtubules. As a consequence, microtubules under the LC-Polscope have the same order



parameter properties as a nematic, this is, the directions n̂ and −n̂ are equivalent. The proper way to define the
order parameter is not by using the orientation angle, but a traceless tensorial order parameter,20

Qαβ =

(
nαnβ − 1

2
δαβ

)
=

1

2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (7)

where n̂ = (cos θ, sin θ), and we have assumed a two dimensional order parameter. Using the expression for the
correlation function, Eq. 6,

CQ(�q, t) =
1

Nt

Nt−τ∑
t=1

Re (F [δQαβ(�x, t)]F
∗ [δQαβ(�x, t+ τ)]) (8)

=
1

2Nt

Nt−τ∑
t=1

Re (F [δ cos 2θ(�x, t)]F ∗[δ cos 2θ(�x, t+ τ)] + F [δ sin 2θ(�x, t)]F ∗[δ sin 2θ(�x, t+ τ)]) , (9)

where summation over repeated indices is assumed. Normalization of the correlation function is not needed
since the nematic order parameter is unitary by definition. Finally, we need to decide how to estimate the
mean of the order parameter, and correspondingly the fluctuations. In order to avoid spatial inhomogeneities
in the orientation inherent of the spindle shape, we calculate the fluctuations at any point in the spindle by
substracting the temporal mean of the order parameter at that point, 〈Qαβ(�x)〉 ≡ 1/Nt

∑Nt

t=1 Qαβ(�x, t). One cut
of the correlation function is displayed in Fig. 6.

5. CONCLUSIONS

We have proposed a method to measure fluctuation correlations in the microtubule orientation of metaphase
spindles. We have presented a registration algorithm, explored its robustness and conclude that it satisfacto-
rily corrects for spindle motions during acquisition. Finally, we have discussed and derived the expression that
estimates the correlation function of the nematic order parameter of microtubules that form the spindle. Fur-
ther studies of the form of the correlation function will provide insights into the dynamics of the spindle and
quantitative tests of the validity of coarse-grained models.
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