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Many subcellular structures contain large numbers of

cytoskeletal filaments. Such assemblies underlie much of cell

division, motility, signaling, metabolism, and growth. Thus,

understanding cell biology requires understanding the

properties of networks of cytoskeletal filaments. While there are

well established disciplines in biology dedicated to studying

isolated proteins — their structure (Structural Biology) and

behaviors (Biochemistry) — it is much less clear how to

investigate, or even just describe, the structure and behaviors

of collections of cytoskeletal filaments. One approach is to use

methodologies from Mechanics and Soft Condensed Matter

Physics, which have been phenomenally successful in the

domains where they have been traditionally applied. From this

perspective, collections of cytoskeletal filaments are viewed as

materials, albeit very complex, ‘active’ materials, composed of

molecules which use chemical energy to perform mechanical

work. A major challenge is to relate these material level

properties to the behaviors of the molecular constituents. Here

we discuss this materials perspective and review recent work

bridging molecular and network scale properties of the

cytoskeleton, focusing on the organization of microtubules by

dynein as an illustrative example.
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Introduction
Treating the cytoskeleton as a material provides a pow-

erful framework to understand cellular-scale phenomena

such as the structure of the spindle [1], the dynamics of
www.sciencedirect.com 
the cell cortex [2], and the flickering behavior of red blood

cell membranes [3]. The benefits of the material approach

come at a price: the system is described at large scales,

with only coarse reference to the underlying molecules.

In cell biology, we would ultimately like to determine

how molecular processes give rise to cellular phenomena.

This will require understanding how the coarse-grained,

material properties of collections of cytoskeletal filaments

emerge from the properties of the individual proteins of

which they are composed.

In this review, we discuss a path to bridge molecular and

coarse-grained properties of the cytoskeleton based on

ideas adapted from the statistical mechanics of materials.

To illustrate, we emphasize recent work which suggests

that the role of dynein in spindle assembly is to generate a

contractile isotropic active stress due to dynein clustering

of microtubule minus-ends. We outline a theory that

connects the large-scale behaviors of networks of micro-

tubules and dynein, to the manner in which dynein slides

pairs of microtubules relative to each other. We compare

and contrast this with other cytoskeletal systems that

exhibit different behaviors on molecular and cellular

scales.

Dynein in spindles, extracts, and purified
systems
Dynein is a minus-end directed molecular motor that is

believed to associate with microtubule minus-ends in

spindles because: first, it is enriched near spindle poles

[4,5], where microtubule minus-ends are also enriched

[6]; second, dynein rapidly accumulates at microtubule

minus-ends that are newly generated when spindle

microtubules are severed [7]; third, stabilized microtu-

bules in mitotic and meiotic cell extracts can organize into

asters in a dynein-dependent fashion, with both dynein

and microtubule minus-ends at the aster core [8,9].

Dynein plays a major role in spindle assembly, as evi-

denced by inhibition and depletion/knockdown experi-

ments, which result in elongated, barrel-shaped spindles

without focused poles [10–13]. Thus, dynein contributes

to the formation of spindle poles, but how, exactly?

We recently investigated the role of microtubule motors

in the complex environment of Xenopus egg extracts

[14,15�], which contain all components necessary for

spindle assembly [10]. Adding taxol to these extracts

caused microtubules to be nucleated and stabilized.

The resulting microtubules formed a macroscopic net-

work that spontaneously contracted. Inhibition
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experiments showed that the network contraction is

primarily due to the activity of dynein. Thus, dynein

drives network contractions in Xenopus egg extracts.

Dynein’s ability to organize microtubules has been fur-

ther investigated in simplified reconstituted systems. A

purified active form of the dynein complex has been

shown to accumulate on microtubule minus-ends in vitro
[16], consistent with the putative localization of dynein on

the minus-ends of spindle microtubules. The minus-end

localized dynein can cross-link pairs of microtubules,

causing their minus-ends to slide together, irrespective

of filament’s relative orientation [17�]. This behavior is

quite different from other molecular motors such as

Kinesin-5 [18] and Kinesin-14 [19], which bind pairs of

microtubules along their length and preferentially slide

apart anti-parallel, but not parallel, microtubules. At

higher concentrations, purified mixtures of activated

dynein and stabilized microtubules organize into contrac-

tile networks [17�], which are remarkably similar to those

structures in Xenopus egg extracts [14]. Thus, dynein

drives network contractions in Xenopus egg extracts,

and it is sufficient to produce microtubule network con-

tractions in purified systems, but how?

As detailed below, a theory containing the observed

minus-end clustering activity of dynein is sufficient to

produce contractile stresses that can quantitatively

explain diverse aspects of the behavior of the contractile

microtubule networks. We conjecture that these same

contractile stresses, driven by minus-end clustering, may

explain how dynein drives spindle fusion [11] and the role

of dynein in spindle pole formation.

Related systems

It has been argued that motor-induced end clustering is a

generic mechanism to produce contractions of cytoskel-

etal networks [20,21��,22]. Indeed, Kinesin-14 and Kine-

sin-5 can both organize purified microtubules into asters,

which presumably form from end-clustering, and, at

higher microtubule concentrations these systems can

form contractile networks [19,23,24]. It thus seems plau-

sible that these network contractions are also driven by

end-clustering. Furthermore, recent work demonstrated

that myosin can accumulate on the ends of actin fila-

ments, and cluster those filament ends together [25],

arguing that contraction of actin networks might be

driven by this same process. Thus, contractions of actin

networks and microtubules networks might ultimately

result from similar processes.

In addition to forming contractile networks, purified

systems of microtubules and motors, and purified systems

of actin and motors, can both form aligned, flowing states

[26,27]. The microtubule and actin aligned systems show

similar emergent phenomena: the continual creation and

annihilation of topological defects and the spontaneous
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motility of defects. One key difference between these

flowing, aligned systems and the contractile, isotropic

systems is the presence of depletants, which causes a

short-range attraction between filaments, that drives

them into the aligned state. Intriguingly, without deple-

tant, the same Kinesin clusters used in [26] instead

organize microtubules into asters and vortices [28]. Thus,

changing network composition can lead to large changes

in network behaviors [29]. Understanding how and why

these different bulk behaviors emerge from molecular-

scale interactions is an open question.

The material science of living systems
In order to connect the molecular and cellular scale

properties of cytoskeletal networks, one needs a frame-

work to describe the large length-scale behaviors of these

systems. One approach is to model cytoskeletal networks

as soft continuum materials. Historically, this begins with

Euler’s formulation, in 1757, of fluid flow as partial

differential equations expressing mass and momentum

conservation. This was generalized by Cauchy who intro-

duced the stress tensor as the fundamental object of

modeling. Statistical physics has since sought to establish

how such macroscopic continuum descriptions arise from

the interactions of a material’s microscopic constituents.

Continuum ideas are proving fruitful in describing active

biological matter. What are the key ideas?

The first is the Continuum Hypothesis. Its essence is to

assume that there are so many microtubules in our system

that their dynamics are faithfully represented by contin-

uous fields in space, such as their (number) density, r(x, t),
and a velocity field, v(x, t). To construct such continuous

objects one needs scale separation, for example, if L is the

system size, and LMT a typical microtubule length, there is

an intermediate scale, Lavg, such that Lavg is small com-

pared to the system size L but large compared to the

length of a microtubule LMT, over which discrete proper-

ties can be averaged to yield continuous fields (see

Figure 1a). r and v are connected by the continuity
equation, a fundamental differential relation that says that

a net flow of material into a region tends to cause an

increase in density, while a net flow out of a region causes

a decrease in density.

Motions, that is the velocity field v(x, t), are generated by

forces. A central task is to understand the forces that a

material exerts upon itself. One complication is that

materials can exert different forces in different directions.

Cauchy showed that this feature was mathematically

described by the stress tensor, which is a 3 � 3 tensor

(or matrix) S(x, t). This makes some sense as matrices,

through multiplication, transform vectors (here a direc-

tion) to vectors (here a force per unit area, or stress vector).

The tensor field S x; tð Þ represents both the internal active

forces (from motors) that drive motion, and the passive
www.sciencedirect.com
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Figure 1

An illustration of different types of contractile and extensile stress fields. (a) The left panel represents a magnified averaging volume used to define

continuous fields of density, velocity, and other quantities across the larger sample in the right panel. This panel also illustrates the isotropic,

contractile stress vector field generated by the stress tensor S = � aI where a > 0. Here the stress vector field is that exerted upon a sphere of

material (dashed curve) by the surrounding material leading to its volumetric compression. (b) The isotropic, extensile stress vector field produced

by setting a negative. C The extensile, dipolar stress vector field generated by the ‘rank-one’ stress tensor S = bppT, where |p| = 1 and b > 0. Here

a sphere of material is extended along the p direction. D In the contractile version where b < 0, the sphere is compressed along the p direction.
forces (like microtubule collisions or cross-linkers) that

resist them.

For example, let us say a stress tensor Sa models the

internal active forces that drive material rearrangements.

Figure 1a shows the isotropic, contractile stresses (forces

per unit area) in a material arising from the simple stress

tensor Sa = � aI where a > 0 and I is the identity tensor.

This type of stress appears when modeling how the

clustering of microtubule minus-ends by dynein drives

network contractions [14]. In addition to isotropic stres-

ses that cause changes in volume, motor induced active

stresses can also have anisotropic, or ‘dipolar’, structure

as illustrated by Figure 1c and d. This stress form arises

when modeling how polarity-sorting by motors lead to

extension of bundles [20,30,31], and is responsible for

the spontaneous flows in aligned systems of microtu-

bules or actin [26,27]. Active stresses can be resisted by a

viscous response of the material to being sheared or

strained, or by elastic deformation of filaments or

cross-links. These stresses can also be represented

through stress tensors that capture these responses. An

added complication can be that these materials are

immersed in a fluid (say, cytoplasm) which can modify

the material motions both by exerting drag and by

facilitating long-range interactions [30].

Another important concept in describing complex mate-

rials is that of order parameters. For example, a tensor-

valued order parameter, commonly called Q, naturally

describes the orientational order of a microtubule assem-

bly, expressing how well, and in what direction, micro-

tubules are mutually aligned. The tensor Q again appears

naturally when modeling the material stresses that

depend upon the local arrangement of microtubules

[31,30]. Indeed, order parameters are central to formulat-

ing stresses and must be evolved using dynamical
www.sciencedirect.com 
equations based upon physical modeling. Note that even

in the absence of local order, active stresses can exist and

drive material motion [14]. If inertial forces are negligible,

and no external forces act on the system, then all of the

forces generated by internal stress fields add up to zero.

This establishes a relation between active stresses and the

passive stresses, and is typically the relation that deter-

mines the material velocity v that moves the material,

changes the density, and evolves other fields.

From molecules to materials
Given these notions of continuous density, velocity,

stress, and order fields at macroscopic scales, how are

their evolution — and thus their emergent

properties — determined by the interactions of their

microscopic constituents? One route has been to extend

methods from the physics of interacting particle systems

[32] to incorporate the active processes which drive

biological systems. We take up the example of contractile

microtubule networks (see Figure 2a) which, to make

sense of experimental observations, we modeled as a

continuous material [14].

In this theory we model the motion of the minus-ends of

microtubules, and assume that the orientations of micro-

tubules are completely random because of the apparent

disorder of the networks.

Invoking scale separation, assume there is a small cube of

volume Vavg ¼ L3
avg , centered at a point x in the experi-

mental volume, and in which we have many microtu-

bules. If the box has N microtubules in it, we define the

density r = N/Vavg. The material velocity v is simply the

average velocity of all the minus-ends within the cube.

These two (hopefully) smooth fields will then satisfy the

continuity equation mentioned in the last section.
Current Opinion in Cell Biology 2019, 56:109–114
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Figure 2

A system of taxol stabilized microtubules in Xenopus extract spontaneously contracts (a). Our modelling predicts a stress Sa ¼ �sr r0 � r½ �I,
shown in (b), which incorporates the effects dynein driven motor minus end clustering (contractile) and steric interactions (extensile), which

balance at the intrinsic density r = r0. (c) A model based on this stress yields good agreement between experimental contractions and

theoretically predicted ones. We display the density of material averaged along the long axis of the system and compare experimental results

(solid lines) to theoretical predictions (dashed lines). The different shades of color in (C) denote subsequent time points (1min intervals).

Figure adapted from [14].
How do the minus-ends interact? Having isolated dynein

as the driver of contraction, and having the idea that

dynein clusters minus-ends together, we assume that if

two minus-ends are sufficiently close, they can be pulled

together by an end-attached dynein. Resisting this con-

traction is the steric repulsion arising from microtubules

colliding with each other. For both attraction and repul-

sion, all forces arrive in equal and opposite pairs, as

required by Newton’s Third Law. Each force pair (force

dipole) in the material generates a stress in the material

that is proportional to the force and the displacement

between the application points of the force. Averaging

these stresslets over a local volume element is encoded in

the Kirkwood Formula of interacting particle systems [32]

and gives the volume-averaged stress. In the case of

having a limited number of motors and small interaction

distances, this yields a density dependent active isotropic
stress Sa that is the sum of motor-induced contractile

stress and sterically induced extensile stress, see
Current Opinion in Cell Biology 2019, 56:109–114 
Figure 2b. At a special density, r = r0, the effects of

dynein induced clustering and steric interactions exactly

balance, so the total active stress is Sa = 0. If r < r0 the
active stress is isotropic contractile (see Figure 1a) and

transitions to isotropic extensile (see Figure 1b) for

r > r0.

The active stress acts against the material’s tendency to

resist deformations, which we model to be proportional to

the rate at which the material deforms (viscous stress) and

against the drag force between the microtubules and the

background fluid. The balance of the viscous stresses,

active stresses and the drag force, yields an expression for

v, the velocity of the material, as a function of the material

density. This continuum material description recapitu-

lates the dynamics of the contracting microtubule net-

work very well (Figure 2c), and also explains how the

time-scale of contraction varies with the size of the

network and that inhibiting dynein influences the speed
www.sciencedirect.com
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of contraction, but not the final density the network

contracts to [14].

Our theory can be extended to incorporate local ordering,

which dominates in many other systems, by using ideas

from active suspension theories. In these theories, the

crosslinked cluster of molecular motors and cytoskeletal

filaments exerts an active stress on the fluid which sur-

rounds it. This in turn generates fluid flows which couple

the dynamics of active elements over length scales much

larger than individual microtubules. The microscopic

physics of motors and filaments enters through the stress

which each active element exerts.

While originally developed for bacterial suspensions [33–

35], the active suspension approach has proven flexible

enough to accommodate much of the essential physics

of extensile microtubule suspensions [30] using parame-

ters derived from interactions between molecular scale

motors and microtubules. In parallel, other groups [36–38]

followed Boltzmann’s idea of encoding the interactions

between filaments in terms of a binary collision kernel,

and Smoluchowski’s approach of encoding microscopic

interactions in terms of flux balances [39–41]. While

different in some aspects [42] a commonality between

all these theories is that they strictly apply only when the

filaments are dilute. Many cell biological systems of

interests form highly cross-linked networks. There is

increasing evidence that such dense networks might have

important differences from dilute systems [43,44�]. In

[21�] the authors predict the initial contraction behavior

of a highly percolated network from the properties of the

network’s motor proteins and crosslinkers. Building a

continuum material along these ideas is an open

challenge.

Conclusion
While still a nascent approach, taking this material sci-

ence perspective has already had some successes in

understanding biological phenomenon. For example,

the actin cortex of C. elegans embryos was shown to behave

as an active chiral fluid, where the chiral flows emerge

from active forces and torques generated by actin and

myosin [2]. These chiral flows break left-right symmetry

in the embryo, and ultimately help to establish the body

axes during development. The organization and dynam-

ics of spindles formed in Xenopus laevis extracts have also

been shown to be well described using an active liquid

crystal theory, and the theory’s phenomenological param-

eters have been measured [1]. This same theory is suffi-

cient to explain the morphology of the spindle. Connect-

ing the parameters of these theories with the molecular-

scale interactions is a future challenge.
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