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ABSTRACT

STUDY QUESTION: Can the BlastAssist deep learning pipeline perform comparably to or outperform human experts and embryolo-
gists at measuring interpretable, clinically relevant features of human embryos in IVF?

SUMMARY ANSWER: The BlastAssist pipeline can measure a comprehensive set of interpretable features of human embryos and
either outperform or perform comparably to embryologists and human experts in measuring these features,

WHAT IS KNOWN ALREADY: Some studies have applied deep learning and developed ‘black-box’ algorithms to predict embryo
viability directly from microscope images and videos but these lack interpretability and generalizability. Other studies have devel-
oped deep learning networks to measure individual features of embryos but fail to conduct careful comparisons to embryologists’
performance, which are fundamental to demonstrate the network’s effectiveness.

STUDY DESIGN, SIZE, DURATION: We applied the BlastAssist pipeline to 67043973 images (32 939 embryos) recorded in the IVF lab
from 2012 to 2017 in Tel Aviv Sourasky Medical Center. We first compared the pipeline measurements of individual images/embryos
to manual measurements by human experts for sets of features, including: (i) fertilization status (n¼ 207 embryos), (ii) cell symmetry
(n¼ 109 embryos), (iii) degree of fragmentation (n¼ 6664 images), and (iv) developmental timing (n¼ 21036 images). We then
conducted detailed comparisons between pipeline outputs and annotations made by embryologists during routine treatments for
features, including: (i) fertilization status (n¼ 18922 embryos), (ii) pronuclei (PN) fade time (n¼ 13781 embryos), (iii) degree of frag-
mentation on Day 2 (n¼11 582 embryos), and (iv) time of blastulation (n¼ 3266 embryos). In addition, we compared the pipeline
outputs to the implantation results of 723 single embryo transfer (SET) cycles, and to the live birth results of 3421 embryos trans-
ferred in 1801 cycles.

PARTICIPANTS/MATERIALS, SETTING, METHODS: In addition to EmbryoScopeTM image data, manual embryo grading and annota-
tions, and electronic health record (EHR) data on treatment outcomes were also included. We integrated the deep learning networks
we developed for individual features to construct the BlastAssist pipeline. Pearson’s v2 test was used to evaluate the statistical inde-
pendence of individual features and implantation success. Bayesian statistics was used to evaluate the association of the probability
of an embryo resulting in live birth to BlastAssist inputs.

MAIN RESULTS AND THE ROLE OF CHANCE: The BlastAssist pipeline integrates five deep learning networks and measures compre-
hensive, interpretable, and quantitative features in clinical IVF. The pipeline performs similarly or better than manual measure-
ments. For fertilization status, the network performs with very good parameters of specificity and sensitivity (area under the receiver
operating characteristics (AUROC) 0.84–0.94). For symmetry score, the pipeline performs comparably to the human expert at both
2-cell (r¼ 0.71±0.06) and 4-cell stages (r¼ 0.77 ±0.07). For degree of fragmentation, the pipeline (acc¼ 69.4%) slightly under-performs
compared to human experts (acc¼ 73.8%). For developmental timing, the pipeline (acc¼ 90.0%) performs similarly to human experts
(acc¼ 91.4%). There is also strong agreement between pipeline outputs and annotations made by embryologists during routine treat-
ments. For fertilization status, the pipeline and embryologists strongly agree (acc¼ 79.6%), and there is strong correlation between
the two measurements (r¼ 0.683). For degree of fragmentation, the pipeline and embryologists mostly agree (acc¼ 55.4%), and there
is also strong correlation between the two measurements (r¼ 0.648). For both PN fade time (r¼0.787) and time of blastulation
(r¼0.887), there’s strong correlation between the pipeline and embryologists. For SET cycles, 2-cell time (P<0.01) and 2-cell symme-
try (P<0.03) are significantly correlated with implantation success rate, while other features showed correlations with implantation
success without statistical significance. In addition, 2-cell time (P< 5� 10−11), PN fade time (P< 5� 10−10), degree of fragmentation on
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Day 3 (P< 5� 10−4), and 2-cell symmetry (P<5� 10−3) showed statistically significant correlation with the probability of the trans-
ferred embryo resulting in live birth.

LIMITATIONS, REASONS FOR CAUTION: We have not tested the BlastAssist pipeline on data from other clinics or other time-lapse
microscopy (TLM) systems. The association study we conducted with live birth results do not take into account confounding
variables, which will be necessary to construct an embryo selection algorithm. Randomized controlled trials (RCT) will be necessary
to determine whether the pipeline can improve success rates in clinical IVF.

WIDER IMPLICATIONS OF THE FINDINGS: BlastAssist provides a comprehensive and holistic means of evaluating human embryos.
Instead of using a black-box algorithm, BlastAssist outputs meaningful measurements of embryos that can be interpreted and cor-
roborated by embryologists, which is crucial in clinical decision making. Furthermore, the unprecedentedly large dataset generated
by BlastAssist measurements can be used as a powerful resource for further research in human embryology and IVF.

STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Harvard Quantitative Biology Initiative, the NSF-Simons
Center for Mathematical and Statistical Analysis of Biology at Harvard (award number 1764269), the National Institute of Heath
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authors declare no competing interests.
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Introduction
IVF has revolutionized the treatment of human infertility and
more than 3 million IVF cycles are now performed each year
worldwide (Adamson et al., 2022). Despite the ubiquity of IVF
treatments, their success rate remains relatively low: only �35%
of cycles result in live birth in the USA (CDC, 2021), leading to
high financial and emotional costs.

While increasing the number of embryos to transfer increases
the potential for live births, it also increases the risks for multiple
pregnancies with associated maternal and offspring morbidity
and mortality (Norwitz et al., 2005). Therefore, clinical standards
strongly recommend single embryo transfer (SET) (Lee et al.,
2016), which greatly increases the need to accurately evaluate
and select embryos.

Manual morphological grading is still the most widely used
method for embryo evaluation (Ebner et al., 2003; Mastenbroek
et al., 2011). Pre-implantation Genetic Testing for Aneuploidies
(PGT-A) is increasingly used for embryo selection, though it is in-
vasive and its efficacy is controversial (Mastenbroek et al., 2008;
Lee et al., 2015; Paulson, 2020). Time-lapse microscopy (TLM)
incubators have been adopted in many clinics to culture embryos
while collecting continuous movies of pre-implantation develop-
ment (Kirkegaard et al., 2012; Dolinko et al., 2017; Armstrong et al.,
2019). TLM systems provide significantly more information than
traditional manual morphological grading (Campbell et al., 2013,
2014; Amir et al., 2019). Many clinics that utilize TLM systems rely
on manual evaluation of embryo movies, which is extremely
time-consuming and subjective. In a recent randomized con-
trolled trial (RCT), the current method of utilizing TLM failed to
improve IVF outcomes relative to manual morphological grading
alone (Ahlstr€om et al., 2022), which might be due to not all the in-
formation from TLM being leveraged. An automated and compre-
hensive means of extracting clinically and biologically relevant
information from TLM movies would be greatly beneficial to
embryologists and has the potential to improve IVF outcomes.

Machine learning (ML) algorithms, which are based on con-
structing predictive models from the (often subtle) associations
present in ‘training’ data, have been highly successful at analyz-
ing large and complex datasets. Compared to humans, ML algo-
rithms can consistently, rapidly, and accurately process large
amounts of data at very low cost (Jordan and Mitchell, 2015),
making them a promising means for aiding in embryo evaluation
through TLM movies. There have been several prior attempts to
develop ML algorithms for use in embryo evaluation and selec-
tion. Some previous ML algorithms were developed to directly

link images or movies of embryos to the probability of an embryo
implanting (Bormann et al., 2020; Chavez-Badiola et al., 2020;
Silver et al., 2020) and developing to fetal heartbeats (Tran
et al., 2019; VerMilyea et al., 2020). However, such ‘black-box’
approaches have a number of disadvantages (Rudin, 2019; Afnan
et al., 2021a,b): (i) The lack of implantation ground truth in most
IVF cycles makes the training data, and hence the resulting algo-
rithms, biased towards SET cycles, which might not be always
representative; (ii) there are numerous confounders, including
patient age, BMI, uterine receptivity, sperm quality, culture con-
ditions, and variations in treatment procedures, which may
make ML algorithms trained solely on embryo images/movies
not generalizable to different patient populations; and (iii) most
fundamentally, typical ML algorithms are designed to aid infer-
ence, but the process of selecting the best embryo for transfer
entails a causal question—what will the result of the IVF treat-
ment be if we transfer this particular embryo?—rather than an
inferential question—given that this embryo was transferred,
what is the probability that it implanted?

ML algorithms that extract biologically and clinically relevant
features from TLM movies have the potential to overcome the
limitations of black-box approaches. Automatically measuring
such features would aid embryologists in their current practices,
and could be combined with interpretable, statistical models of
oocyte and embryo development (Leahy et al., 2021) to guide em-
bryo selection. A number of prior studies have developed ML
algorithms to measure interpretable features, but, so far, these
have been mostly limited to simple, individual features such as
cell stage up to 5- or 8-cell (Khan et al., 2016; Lau et al., 2019;
Malmsten et al., 2019), blastocyst segmentation of inner cell mass
(ICM) and trophectoderm (TE) (Rad et al., 2018, 2020; Harun et al.,
2019), and blastocyst grading (Khosravi et al., 2019; Kragh et al.,
2019). In addition, automated measurements might be timesav-
ing and assist embryologists, but to be useful, their
accuracy must be at least comparable to that of embryologists.
To the best of our knowledge, no prior studies have systemati-
cally compared automated measurements to those of human
experts and embryologists (Simopoulou et al., 2018; Sfakianoudis
et al., 2022).

Here, we built off our prior works (Jang et al., 2023; Leahy et al.,
2020; Lukyanenko et al., 2021) and developed BlastAssist, a holis-
tic pipeline to measure a comprehensive set of interpretable
features that are clinically and biologically relevant, including: (i)
fertilization status, (ii) cell symmetry, (iii) degree of fragmenta-
tion, (iv) developmental timing, and (v) size of the ICM and TE

2 | Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/advance-article/doi/10.1093/hum
rep/deae024/7613530 by guest on 25 February 2024



and the dynamics of blastocyst expansion. We used BlastAssist

to analyze movies of 32 939 human embryos (67 043973 images),
resulting in an unprecedented dataset that will be a powerful
resource for studying human pre-implantation embryology.

To characterize the accuracy of the BlastAssist pipeline, we con-
ducted detailed comparisons between the pipeline outputs to
four different metrics: (i) manual annotations from a panel of hu-

man experts in idealized situations, (ii) annotations previously
made by embryologists during the course of routine IVF treat-
ments, (iii) implantation success rate of SET cycles, and (iv) the

likelihood that the transferred embryo would result in live birth.

Materials andmethods
Study design and dataset
The EmbryoScopeTM dataset was collected from the IVF unit of

Sourasky Medical Center in Tel Aviv, Israel from treatment cycles
performed between 2012 and 2017. EmbryoScopeTM is the most
widely used TLM system for IVF (Dolinko et al., 2017). It utilizes

Hoffman modulation contrast (HMC) microscopy (Hoffman and
Gross, 1975). The dataset consists of 32 939 embryos, imaged ev-
ery 20min at seven different focal planes up to the first 5 days of

development, yielding 67043973 JPEG files, each 500� 500 pixels
in size. Along with the image data, standard clinical annotations
were also recorded for these embryos. The clinical annotations

include: (i) electronic health record (EHR) data, (ii) treatment in-
formation, such as fertilization method, hormone dosage, and
culture media, (iii) embryo grading and annotations, such as de-

velopmental timing, degree of fragmentation on Days 2 and 3, PN
count, and fade time, and (iv) treatment outcomes, such as beta-
HCG (b-HCG) and live births. These clinical annotations were

used to compare clinic and network measurements at four differ-
ent levels: Comparison of BlastAssist measurements to: (i) meas-
urements performed by human expert(s) in ideal situations, (ii)

clinical measurements during routine treatments, (iii) implanta-
tion outcomes for SET cycles, and (iv) live birth results for cycles
where up to four embryos were transferred.

Metrics
In addition to metrics commonly used in IVF clinics, we imple-
mented quantitative metrics to better represent the results of
BlastAssist.

We define the symmetry score as a function of time S(t) as the
standard deviation of the areas normalized by their mean. We
calculate the embryo’s symmetry score as the time-averaged

symmetry for the entire 2-cell or 4-cell stage.
We define the average thickness of TE and zona pellucida (ZP)

as the average of the closest distances from each point on the

medial axis (Breu et al., 1995) of the TE or ZP to the boundary mul-
tiplied by 2.

When ICMs first form, their sizes increase significantly at first

and then fluctuate around a constant value. In addition, ICMs
are known to have significant movement throughout the blasto-
cyst stage, which means that the ICMs can move in and out of

the focal plane during imaging, which can dramatically change
the ICM’s detected size. We define the average ICM size as the av-
erage area of detected ICM over time if the ICM size is relatively

constant for approximately 5h or more.
We define blastocyst expansion rate as the slope of the linear

regression fit of the size of the blastocyst diameter over time if

the Pearson correlation coefficient is larger than 0.85, to elimi-
nate any blastocysts that do not have a steady growth rate.

Statistics
Pearson’s correlation coefficient (r) (Freedman et al., 2007;
Benesty et al., 2008) was used to evaluate associations between
two measurements.

For implantation results of the 723 SET cycles, the cycles are
divided into two to four classes for each feature and the success
rates for implantation are calculated. For continuous features,
the classes are divided based on both the biological meaning of
the feature and the data distribution. The error bars are calcu-
lated r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð1� PÞ=Np
, where P is the probability which is the im-

plantation success rate and N is the sample size. Pearson’s v2

test (McHugh, 2013) was performed on each feature to evaluate
the statistical independence of the feature and the implanta-
tion results.

For live birth results of the 3421 embryos (1801 cycles) where
up to four embryos were transferred, we used a previously devel-
oped method (Leahy et al., 2021) to estimate the probability of an
implanted embryo resulting in live birth as a function of individ-
ual features. We estimate this probability with a Bayesian ap-
proach (see Supplementary Data File S1: Correlations to live
birth). Two-sided t-test (Student, 1908) was performed on each
feature to evaluate the statistical significance of the slope of
the fitting.

Ethics
The study was approved by the Internal Review Board (IRB) of
both Tel Aviv Sourasky Medical Center (IRB 606/17) and Harvard
University (IRB 18-0532).

Results
BlastAssist pipeline
In our previous works (Jang et al., 2023; Leahy et al., 2020;
Lukyanenko et al., 2021), we trained five individual neural
networks: (i) ZP segmentation, (ii) developmental stage classifier,
(iii) degree of fragmentation classifier, (iv) PN detector, and (v)
blastomere detector to measure comprehensive metrics during
pre-implantation development. In the current study we trained
an additional network: (vi) blastocyst segmentation (see Data
availability and Supplementary Data File S1) (Supplementary
Tables S1 and S2).

By integrating these six networks into a holistic pipeline,
which we call BlastAssist, we have created a means to perform
automated measurements for each embryo, throughout all de-
velopmental stages during pre-implantation development (Fig. 1,
Supplementary Figs S1, S2, S3, and S4, Video 1, Supplementary
Videos S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, and S11). We applied
the BlastAssist pipeline to a dataset of 67 043 973 images (32 939
time-lapse movies of embryos), resulting in an unprecedentedly
large human embryo dataset containing comprehensive and
quantitative measurements (see Supplementary Table S3 for pa-
tient demographic and cycle information).

Comparison of BlastAssist pipeline to
human experts
In general, computer vision (CV) networks are evaluated based
on their performances of various metrics on the test set, which
we have performed in our previous study (Leahy et al., 2020).
Another common evaluation for the efficacy of CV networks
involves letting multiple human labelers or experts in the field
perform the same measurements or tasks as the networks. This
type of comparison is usually conducted because for CV net-
works to be effective, they have to perform similarly to or
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outperform human experts, depending on the variable we are

trying to measure. These human expert measurements are usu-
ally performed under idealized and controlled circumstances. In

this study, we not only performed this type of comparison be-
tween human experts and the BlastAssist pipeline, we also per-
formed comparison between clinical results and the pipeline,

providing a comprehensive evaluation of the efficacy of the pipe-
line, from both a CV and clinical perspective, which most studies

fail to do.
For each network in the pipeline, depending on the complexity

of the specific task and the estimated human accuracy, we have

either one or a few human experts perform the same tasks by
hand. For simple tasks where we expect relatively high human

accuracies, such as counting number of PN, we take the human
expert input as the ground truth dataset. For complicated tasks

where we expect disagreements between human experts, such
as labeling the degree of fragmentation, we have multiple human
experts perform the same task, and create a ground-truth data-
set using the majority consensus of these labelers and the net-
work. We compared the accuracy of the network and of the
human experts to the ground truth dataset.

For fertilization status, the network performs with very good
parameters of specificity and sensitivity (areas under the receiver
operating characteristic (AUROC) curve of 0.84–0.94) (Fig. 2A). We
also measured the human expert’s true positive and false posi-
tive rate of labeling embryos as having 0, 1, 2, or �3PN. The
results show that the network performs as well as or better than
the human expert at identifying embryos with either 0PN or 1PN,
and it performs slightly less well than the human expert at iden-
tifying whether an embryo has 2PN or �3PN.

For cell symmetry, we compared the network measurement to
the cell symmetry scores generated from a human expert’s man-
ually traced cell boundaries for each image. Symmetry scoring of
the network and of the human expert are highly correlated for
both 2-cell (r¼ 0.71±0.06) and 4-cell (r¼ 0.77±0.07) embryos
(Fig. 2B). The results show that the network is highly accurate
compared to the human expert, and the accuracy is consistent
with both symmetric and asymmetric embryos.

Degree of fragmentation is an important parameter in deter-
mining embryo quality, but it is considered to be relatively sub-
jective and we see greater variability between embryologists in
determining the degree of fragmentation (Paternot et al., 2011).
Therefore, for degree of fragmentation, five human experts la-
beled the same test set, where each labeler annotated the degree
of fragmentation for every image. We then created a ground-
truth label for each image using the majority vote of these five
labelers plus network, excluding images that do not have a ma-
jority consensus. We compared the network to the ground truth
dataset, and the network’s overall accuracy of classifying the

Figure 1. Overview of the BlastAssist pipeline of networks. (A) An example of BlastAssist outputs on a time-lapse video of an embryo (see Video 1)
with measurements highlighted. Note: the stage classifier currently does not differentiate between blastocyst and expanded blastocyst, the label of
‘expanded blastocyst’ is manually added. (B) Here, we present the holistic pipeline of our networks with all the biological and clinical measurements.
We first evaluate all the movies with the zona pellucida (zona) segmentation and crop the images to the embryo. We measure the zona thickness from
the result. We then evaluate all the cropped images with the stage classifier and images that are determined to be 1-cell will be evaluated by the
pronuclei detector, where we obtain pronuclei (PN) count and fade time. All other images will be evaluated by the fragmentation (frag) classifier, where
we obtain the degree of fragmentation. Only the images with low fragmentation (<1.5) will be evaluated further. Developmental timing measurements
are obtained from these images with low fragmentation. Images that are identified by the stage classifier to be 1- to 8-cell images will be evaluated by
the blastomere detector where cell contour and symmetry are measured. Blastocyst images will be segmented to obtain blastocyst measurements.

Video 1. Sample video of BlastAssist pipeline applied to a human
embryo. Full video of Fig. 1A. A 2 pronuclei (PN) embryo that was
produced by intracytoplasmic sperm injection (ICSI) and developed to a
cleavage stage embryo with high cell symmetry and low fragmentation,
started blastulation at 101-h post-fertilization and developed to a high-
quality expanded blastocyst.
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degree of fragmentation is 69.4%. We also compared the assess-
ment of each human expert to the ground-truth dataset; the five
human experts’ overall accuracies were relatively high (76.5%,
79.4%, 77.6%, 66.4%, and 69.2%), with an average of 73.8%. The
network performs comparably to human experts at identifying
embryos with 0% fragmentation, and it slightly underperforms
relative to human experts at identifying embryos with 0–10%,
10–20%, and >20% fragmentation (Fig. 2C).

For developmental stage, five human experts each labeled the
test set, where each labeler annotated the developmental stage
for every image. We created a ground-truth label for each image
using the majority consensus of these labelers and the network.
We compared the accuracy of the network and of the human
experts to this ground truth dataset (Fig. 2D). Overall, the net-
work has a 90.0% accuracy. The five human experts’ overall ac-
curacies were as high as 93.2%, 92.9%, 92.4%, 91.8%, and 86.8%,
with an average of 91.4%. The network tends to perform with
high accuracy on the physiologically typical stages of 2-, 4-, 8-
cells and relatively lower accuracy on the transition stages of 3-,
5-, 6-, and 7-cells. This is expected because the transition stages

are brief, and thus less common, resulting in fewer images in

these stages for training, and the number of cells is not always

well-defined during cell divisions. The network is very accurate

at identifying morula, blastocysts, and empty wells. For degener-

ate embryos, the occurrences are small but being able to deselect

them is very important. Since it’s very difficult to distinguish be-

tween highly fragmented embryos and degenerated embryos, the

results varies greatly amongst human experts.

Comparison of BlastAssist pipeline to clinical
measurements
Since the human expert performance is from an idealized situa-

tion where every image is annotated in detail, it can differ from

embryologists’ performance in an actual clinical setting, where

embryo annotations are performed only at distinct time points,

and with significantly more time constraints. Therefore, we fur-

ther evaluated the BlastAssist performance by comparing the

pipeline measurements to the available clinical annotations

recorded during routine treatments.

Figure 2. Comparison of BlastAssist outputs to human experts. (A) ROC curves of network performance in blue on 0PN (pronuclei) (upper left), 1PN
(upper right), 2PN (lower left), and �3PN (lower right) embryos with comparison to human expert performance in light blue dots. Pronuclei detections
are highlighted in blue in sample images. n¼207 embryos. (B) Comparison of network (y-axis) to human expert measurements (x-axis) of 2- (upper)
and 4-cell (lower) stage symmetry score. The red dots corresponds to sample images of symmetric and asymmetric embryos in both stages, with cell
contour detection highlighted in yellow. n¼109 embryos. (C) Comparison of network (dark blue dots) and five human experts (light blue dots)
performance on different degrees of fragmentation. n¼6664 images. (D) Comparison of network (dark blue dots) and five human experts (light blue
dots) performance on different developmental stages. n¼ 21036 images. The x-axis labels correspond to 1− to 9þ cell, morula (M), blastocyst (B), empty
well (E), and degenerate (D).
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First, we present the general description of the clinical
variables measured by the BlastAssist pipeline (Supplementary
Fig. S5) and comparison to clinical annotations when available
(Table 1). The general distributions of BlastAssist and clinical
measurements are very similar, with discrepancies in PN
count and degree of fragmentation which we address later in
this section.

There are four measurements that are representative and
quantitative that BlastAssist evaluates which were also previ-
ously recorded by embryologists in the IVF lab during the course
of routine treatments: PN count, PN fade time, degree of frag-
mentation, and the time of blastulation. We compared the
BlastAssist measurements to available clinical data from our
dataset of 32 939 embryos, including both side-by-side compari-
son of the data distribution and per-embryo comparison of each
measurement (Fig. 3).

For PN count, the network and embryologists strongly agree,
with strong correlation of between the two measurements
(acc¼ 79.6%, r¼ 0.683). They mostly agree on 1PN and 2PN em-
bryos, with small disagreements on 0PN and �3PN embryos
(Fig. 3A). The small discrepancies on number of PN mostly come
from these following cases: (i) an air bubble or other impurities
obstructing the view of the microscope, (ii) mis-identifying 2PN
with vacuole as �3PN, (iii) mis-identifying 2PN as 1PN when one
of the pronuclei is extremely faint and/or faded after very few
frames. In these cases, the classifier cannot function properly
and can misidentify the number of PN. However, these cases can
be easily spot-checked and verified by an embryologist. For PN
fade time, the network and embryologists mostly agree, and their
measurements have almost identical distributions with a strong
correlation (r¼ 0.787) (Fig. 3B). For degree of fragmentation, the
network and embryologists agree 55.4% of the time, with most of
the disagreement coming from two adjacent classes. This dis-
crepancy may be coming from the low precision of human label-
ing of this feature. However, there is still a strong correlation
between the two measurements (r¼ 0.648) (Fig. 3C). For time of
blastulation, the network and embryologists mostly agree, and
their measurements have almost identical distributions and a
strong correlation (r¼ 0.887) (Fig. 3D).

Since the clinical annotations consist of single measurements
for each embryo, it is not possible to use this data to quantify
uncertainties or determine a ground truth. Nevertheless, the
close agreement between the clinical annotations and the
BlastAssist outputs suggests that BlastAssist performs compara-
bly to embryologists in a clinical setting.

Associations of BlastAssist outputs to clinical
implantation results
In addition to comparison to human expert or clinical annotations
in idealized situations and during routine treatments, we also com-
pared selected BlastAssist results to IVF outcomes. Association
with clinical outcomes can provide insight into how well the pipe-
line might be able to predict IVF outcomes once implemented into
clinical environments. In this study, we evaluated associations to
clinical outcomes in two different ways. First, we used 723 SET
cycles with known implantation results for every embryo trans-
ferred (Fig. 4). SET cycles allow us to have the most accurate infor-
mation on the implantation success rate of individual embryos.

We evaluated the association of SET cycle implantation
results to clinical features that BlastAssist measures. Here im-
plantation success is defined as positive (>25 IU/L) b-HCG results.
There are five main clinical features that show strong correla-
tions with implantation success. For Day 2 degree of fragmenta-
tion, embryos with higher degree of fragmentation have lower
implantation success rates (P< 0.3) (Fig. 4A). For developmental
timing, delayed cleavage into 2-cell stage is negatively correlated
with implantation success rate, with embryos undergoing the
first cleavage at <24h presenting the highest chance for implan-
tation (P< 0.01) (Fig. 4B). For 2-cell symmetry, embryos with
higher symmetry (less than 0.2) (see Materials and methods:
Metrics) have higher implantation success rate (P< 0.03) (Fig. 4C).
When analyzing blastocysts, our results show that embryos with
higher blastocyst expansion rate (>1.5mm/h) have higher implan-
tation success rate (P<0.2) (Fig. 4D). ICM size of blastocysts also
shows strong correlation with implantation success rate, with
blastocysts presenting ICM size over 1000 mm2 demonstrating
higher implantation rates (P<0.5) (Fig. 4E). Amongst the features,
developmental timing and cell symmetry are significantly

Table 1. Distributions of EmbryoScopeTM dataset measured by BlastAssist and by clinical annotations.

The entire dataset
(N532939 embryos)

Dataset where clinical annotations are available (N512737 embryos)

BlastAssist BlastAssist Clinical annotation

PN count
2PN (normal) 63.3% 79.2% 94.7%
0PN (unfertilized) 16.2% 4.4% 1.7%
1PN (abnormal) 13.6% 10.9% 3.3%
�3PN (abnormal) 6.9% 5.4% 0.3%

PN fade time (h) 33.9 ± 23.7 27.1 ± 11.7 25.6 ± 4.1
1-cell ZP thickness (mm) 19.6 ± 2.7 19.5 ± 2.7 –
2-cell time (h) 30.8 ± 13.0 28.6 ± 7.2 28.7 ± 5.3
4-cell time (h) 42.4 ± 12.7 41.2 ± 9.4 41.2 ± 6.6
Symmetry score

2-cell 0.12±0.10 0.11±0.09 –
4-cell 0.20±0.09 0.19±0.08 –

Day 2 degree of fragmentation
0% 54.9% 46.7% 29.0%
0–10% 30.5% 36.9% 43.9%
10–20% 9.0% 10.2% 20.0%
>20% 5.7% 6.2% 7.0%

Blastulation time (h) 101.2 ± 15.5 102.6 ± 12.9 101.9 ± 8.3
ICM size (mm2) 1017.6 ± 515.8 999.3 ± 482.0 –
Blastocyst expansion rate (mm/h) 1.6 ± 0.7 1.7 ± 0.7 –

Data are presented as mean±SD or percentage. ICM, inner cell mass; PN, pronuclei; ZP, zona pellucida.
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correlated with implantation success rate (P< 0.05). Other fea-
tures show correlations with implantation success without sta-
tistical significance, likely due to the small sample sizes. For
example, very few embryos with higher than 20% fragmentation
are transferred as singletons in typical IVF cycles, therefore only
a small amount of those can be included in the analysis (n¼ 14).

Associations of BlastAssist outputs to clinical live
birth results
SET cycles give us the most accurate information on individual
embryos’ clinical outcome. However, SET cycles have usually
been limited to younger patients and patients with good progno-
sis (De Neubourg and Gerris, 2003; van Montfoort et al., 2005),

Figure 3. Comparison of BlastAssist outputs to clinical annotations. (A) Comparison of pronuclei (PN) count measurements between clinic and
network, with overall number of embryos per class (left) and confusion matrix of measurements per embryo (right). n¼18922 embryos. Each
intersection of the confusion matrix represents the amount of embryos identified as one class by the network and as the corresponding class by the
clinic. The values are normalized between 0 and 1 based on the clinical measurements. (B) Comparison of PN fade time measurements between clinic
and network, with overall number of embryos per class (left) and scatterplot of measurements per embryo (right). n¼13781 embryos. (C) Comparison
of Day 2 degree of fragmentation measurements between clinic and network, with overall number of embryos per class (left) and confusion matrix of
measurements per embryo (right). n¼11 582 embryos. Each intersection of the confusion matrix represents the amount of embryos identified as one
class by the network and as the corresponding class by the clinic. The values are normalized between 0 and 1 based on the clinical measurements.
(D) Comparison of time of blastulation measurements between clinic and network, with overall number of embryos per class (left) and scatterplot of
measurements per embryo (right). n¼3266 embryos.

Figure 4. Associations of BlastAssist outputs to clinical implantation results. Seven hundred and twenty-three single embryo transfer (SET) cycles
were included. (A) Implantation success rate for embryos with 0% (n¼386), 0–10% (n¼ 268), 10–20% (n¼ 48), and >20% (n¼14) fragmentation on Day 2
post-fertilization. v2¼ 4.60, P<0.3. (B) Implantation success rate for embryos that developed to 2-cell stage in <24h (n¼120), 24–30h (n¼ 454), and
�30h (n¼138) post-fertilization. v2¼9.59, P< 0.01. (C) Implantation success rate for embryos with <0.2 (n¼627), and �0.2 (n¼ 63) cell symmetry at
2-cell stage. v2¼5.05, P<0.03. (D) Implantation success rate for embryos that expand at <1.5mm/h (n¼ 17), and �1.5 mm/h (n¼23) during blastocyst
stage. v2¼2.25, P< 0.2. (E) Implantation success rate for embryos with inner cell mass (ICM) size <1000 mm2 (n¼ 39), and �1000 mm2 (n¼30) during
blastocyst stage. v2¼0.60, P< 0.5.
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resulting in a relatively small sample size, even from our large
clinical dataset. Therefore, we used a previously developed
Bayesian inference approach (Leahy et al., 2021) to investigate
associations of BlastAssist measurements to embryos in cycles
where up to four embryos were transferred (see Supplementary
Data File S1: Correlations to live birth). Here we compared se-
lected BlastAssist results to the clinical live births outcomes of
3421 embryos that were transferred (1801 cycles) (Fig. 5). We
found the correlations between the probability of an embryo
resulting in a live birth and individual BlastAssist measurements
(Fig. 5 and Supplementary Fig. S6).

Delayed PN fade time is strongly negatively correlated to the
probability of an embryo resulting in live birth (r¼−0.50±0.08,
t¼−6.25, P< 5�10−10) (Fig. 5A). ZP thickness during the 1-cell
stage shows no significant correlation to the probability of an
embryo resulting in live birth (r¼ 0.04 ±0.06, t¼ 0.67, P<0.6)
(Fig. 5B). Higher 2-cell symmetry (corresponding to a low symme-
try score) in embryos corresponds to a higher success rate
(r¼−0.29± 0.09, t¼−3.22, P<5�10−3) (Fig. 5C). For developmen-
tal timing, the amount of time it takes for embryos to develop to
2-cell stage is negatively correlated with clinical success rates
(r¼−0.54± 0.08, t¼−6.75, P< 5�10−11) (Fig. 5D). Embryos with
higher degree of fragmentation on Day 3 have lower success rates
(r¼−0.31± 0.08, t¼−3.88, P<5� 10−4) (Fig. 5E). The amount of
time it takes for embryos to develop to blastocyst is negatively
correlated with clinical success rates (r¼−0.27 ±0.14, t¼−1.93,
P< 0.06) (Fig. 5F).

Amongst the features, 2-cell time, PN fade time, degree of
fragmentation on Day 3, and cell symmetry are significantly cor-
related with the probability of embryos resulting in live births. ZP
thickness during the 1-cell stage shows no significant correla-
tions with clinical success rates. Time of blastulation shows no
significant correlations, which may be due to the small sample

size (n¼407). Results from additional features are included in
Supplementary Fig. S6.

Discussion
In this study, we have built off of our prior works (Jang et al.,
2023; Leahy et al., 2020; Lukyanenko et al., 2021) to develop and
validate BlastAssist, a holistic pipeline to measure a comprehen-
sive set of interpretable features in clinical IVF. Instead of using a
black-box algorithm, BlastAssist outputs meaningful measure-
ments of embryos that can be interpreted and corroborated by
embryologists, which should be helpful in clinical decision mak-
ing. These measurements are more detailed and quantitative
than those currently used in standard clinical practice, and are
therefore likely to assist IVF clinicians in selecting embryos for
transfer and for freezing. BlastAssist is capable of measuring di-
verse features that are believed to be biologically and clinically
relevant, including fertilization, cell symmetry, degree of frag-
mentation, developmental timing, and blastocyst expansion.
Thus, BlastAssist provides a comprehensive and holistic means
of evaluating embryos.

Automated measurements should be carefully validated be-
fore being deployed. We thus conducted and reported detailed
comparisons between the pipeline outputs and measurements
from a panel of human experts. The pipeline we developed has
very high accuracies, performing comparably to, and in some
cases outperforming human experts.

Embryo evaluations in actual clinical settings may differ from
those performed in idealized situations. We thus further com-
pared BlastAssist measurements to annotations previously made
by embryologists during the course of routine IVF treatments.
Since the clinical annotations only consist of single measure-
ments for each embryo, we cannot quantify uncertainties for

Figure 5. Associations of BlastAssist outputs to clinical live birth outcomes. Three thousand four hundred and twenty-one embryos (1801 cycles) were
included in the association study. Estimated probability of an embryo resulting in a live birth as a function of (A) pronuclei (PN) fade time (n¼3321,
t¼−6.25, P< 5�10−10). (B) Zona pellucida (ZP) thickness during the 1-cell stage (n¼3471, t¼ 0.67, P<0.6). (C) 2-cell symmetry score (n¼3023, t¼−3.22,
P<5�10−3). (D) Time for embryos to reach 2-cell stage (n¼ 3388, t¼−6.75, P<5� 10−11). (E) Degree of fragmentation on Day 3 (n¼3251, t¼−3.88,
P<5�10−4). (F) Time for embryos to reach blastocyst stage (n¼407, t¼−1.93, P<0.06). The data points and error bars show the probability of the
embryo producing live births estimated by a discrete model that fits an independent probability for each value. The curves and regions between faded
lines show the best continuous nonlinear model fit with the data and its uncertainty. The correlations between p(live_birth) and the variables are
plotted in each figure (see Supplementary Data File S1: Correlations to live birth).
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these routine clinical measurements. However, the close agree-
ment between BlastAssist and clinical annotations indicates that
BlastAssist performs comparably to embryologist in a clini-
cal setting.

To further investigate the potential of BlastAssist in a clinical
setting, we studied the associations between BlastAssist meas-
urements and clinical outcomes, including implantation results
from SET cycles and live birth results from cycles with up to four
embryos transferred. We found that PN fade time, but not ZP
thickness, was significantly associated with the probability of
embryos resulting in live births (Fig. 5A and B), while previous
studies have given conflicting indications regarding the extent to
which PN fade time (Lemmen et al., 2008; Coticchio et al., 2018;
Barberet et al., 2019; Kobayashi et al., 2021) and ZP thickness
(Gabrielsen et al., 2000; Hagemann et al., 2010; Koifman et al.,
2014; Lewis et al., 2017) are predictive of clinical outcomes. We
found that cell symmetry was significantly positively correlated
with the probability of embryos resulting in live births, while
delayed cleavage time and degree of fragmentation were signifi-
cantly negatively correlated with the probability of embryos
resulting in live births (Fig. 5C–E), which is consistent with find-
ings of previous studies regarding these variables (Ziebe et al.,
2003; Della Ragione et al., 2007; Lemmen et al., 2008; Weitzman
et al., 2010; Racowsky et al., 2011; Lee et al., 2012; Sela et al., 2012).
Such associations should not form the sole basis of embryo selec-
tion algorithms since they do not account for extensive con-
founding factors (Rudin, 2019; Afnan et al., 2021a,b). However,
incorporating BlastAssist outputs into mechanistic mathematical
models, which explicitly account for patient factors and clinical
practice (Leahy et al., 2021), has the potential to produce quanti-
tative, predictive, and interpretable embryo selection algorithms.

Not only can BlastAssist be used for automated clinical evalu-
ations to assist embryologists, it can also be used to obtain quan-
titative measurements to aid biomedical research. We used
BlastAssist to analyze movies of 32 939 human embryos
(67 043 973 images), resulting in an unprecedented dataset that
will be a powerful resource for studying human pre-implantation
embryology. Further studies of the data generated in this work
may help to develop and test mathematical models of pre-
implantation embryo development, which could further improve
embryo selection. Ultimately, RCTs will be necessary to deter-
mine whether usage of the developed pipeline can improve suc-
cess rates in clinical IVF.

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability
The data that support the findings of this study are available
from Lis Maternity Hospital Tel-Aviv Sourasky Medical Center
but restrictions apply to the availability of these data due to regu-
lations regarding protection of the rights and welfare of human
subjects of research, and so are not publicly available. Data are
however available from the authors (corresponding author: H.Y.
Y.; Email: helen_yang@fas.harvard.edu) upon request and upon
IRB approval and with Data Transfer Agreement with Lis
Maternity Hospital Tel-Aviv Sourasky Medical Center, where the
data were originally generated. The code used for this study has
been deposited in a public GitHub repository (see https://github.
com/hyang185/BlastAssist).
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