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Abstract
Living matter moves, deforms, and organizes itself. In cells this is made possible by networks of
polymer filaments and crosslinking molecules that connect filaments to each other and that act as
motors to do mechanical work on the network. For the case of highly cross-linked filament
networks, we discuss how the material properties of assemblies emerge from the forces exerted by
microscopic agents. First, we introduce a phenomenological model that characterizes the forces
that crosslink populations exert between filaments. Second, we derive a theory that predicts the
material properties of highly crosslinked filament networks, given the crosslinks present. Third, we
discuss which properties of crosslinks set the material properties and behavior of highly
crosslinked cytoskeletal networks. The work presented here, will enable the better understanding
of cytoskeletal mechanics and its molecular underpinnings. This theory is also a first step toward a
theory of how molecular perturbations impact cytoskeletal organization, and provides a
framework for designing cytoskeletal networks with desirable properties in the lab.

1. Introduction

Materials made from constituents that use energy to move are called active. These inherently out of
equilibrium systems have attractive physical properties: active materials can spontaneously form patterns
[1], collectively move [2–4], self-organize into structures [5, 6], and do work [7]. Biology, through
evolution, has found ways to exploit this potential. The cytoskeleton, an active material made from
biopolymer filaments and molecular scale motors, drives cellular functions with remarkable spatial and
temporal coordination [8, 9]. The ability of cells to move, divide, and deform relies on this robust, dynamic
and adaptive material. To understand the molecular underpinnings of cellular mechanics and design
similarly useful active matter systems in the lab, a theory that predicts their behavior from the interactions
between their constituents is needed. The aim of this paper, is to address this challenge for highly
crosslinked systems made from rigid rod-like filaments and molecular scale motors.

The large-scale physics of active materials can be described by phenomenological theories, which are
derived from symmetry considerations and conservation laws, without making assumptions on the detailed
molecular scale interactions that give rise to the materials properties [10–12]. This has allowed exploring
the exotic properties of active materials, and the quantitative description of subcellular structures, such as
the spindle [6, 13] (the structure that segregates chromosomes during cell division) and the cell cortex
[14–17] (the structure that provides eukaryotic cells with the ability to control their shape), even though
the microscale processes at work often remain opaque. In contrast, understanding how molecular
perturbations affect cellular scale structures requires theories that explain how material properties depend
on the underlying molecular behaviors. Designing active materials with desirable properties in the lab will
also require the ability to predict how emergent properties of materials result from their constituents [18].
Until now, the attempts to bridge this gap have relied heavily on computational methods [19–21], or were
restricted to sparsely crosslinked systems [22–26], one dimensional systems [27, 28], or systems with
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permanent crosslinks [29]. Our interest here are cytoskeletal networks, which are in general highly
crosslinked by tens to hundreds of transient crosslinks linking each filament into the network. In this
regime, the forces generated by different crosslinks in the network balance against each other, and not
against friction with the surrounding medium, as they would in a sparsely crosslinked regime [30].

We derive how the large scale properties of an actively crosslinked network of cytoskeletal filaments
depend on the micro-scale interactions between its components. This theory generalizes our earlier work on
one specific type of motor-filament mixture, XCTK2 and microtubules [30, 31], by introducing a generic
phenomenological model to describe the forces that crosslink populations exert between filaments.

The structure of this paper is as follows. In section 2, we discuss the force and torque balance for systems
of interacting particles, and specialize to the case of interacting rod-like filaments. This will allow us to
introduce key concepts of the continuum description, such as the network stress tensor. Next, in section 3,
we present a phenomenological model for crosslink interactions between filaments, that can describe the
properties of many different types of crosslinks in terms of just a few parameters, which we call crosslink
moments. In section 4, we derive the continuum theory for highly crosslinked active networks and obtain
the equations of motion for these systems. Finally, in section 5 we give an overview of the main predictions
of our theory and discuss the consequences of specific micro-scale properties for the mechanical properties
of the consequent active material. We summarize and contextualize our findings in the discussion section 6.

2. Force and torque balance in systems of interacting rod-like particles

We start by discussing the generic framework of our description. In this section we give equations for
particle, momentum and angular momentum conservation and introduce the stress tensor, for generic
systems of particles with short ranged interactions. We then specialize to the case of interacting rod-like
filaments, which form the networks that we study here.

2.1. Particle number continuity
Consider a material that consists of a large number N of particles, that are characterized by their center of
mass positions xi and their orientations pi, where |pi| = 1 is an unit vector and i is the particle index. Here
and in the following we will used bold-faced symbols to denote vectors. In some cases we will also use
capitalized bold symbol to denote a tensor but it will be clear in context. For clarity we define all vector and
tensor operations in appendix A in terms of index notation. We define the particle number density

ψ(x, p) =
∑

i

δ(x − xi)δ(p − pi). (1)

Here and in the following δ(x − xi) has dimensions of inverse volume, while δ(p − pi) is dimensionless.
Also note that, with definition equation (1), ψ(x, p) is a distribution and not a continuous function.
However, a continuous density function can easily be obtained from the density distribution by averaging
over a coarse graining volume, see appendix B, and all results defined here for the distribution equally hold
for the function. Thus, in the following, we will use distributions and functions interchangeably, to
unburden our notation. Ultimately, our goal is to predict how ψ changes over time. This is given by the
Smoluchowski equation

∂tψ(x, p) = −∇ · (ẋψ) − ∂p · (ṗψ) , (2)

where
ẋψ =

∑
i

ẋiδ(x − xi)δ(p − pi) (3)

and
ṗψ =

∑
i

ṗiδ(x − xi)δ(p − pi) (4)

define ẋ and ṗ, the fluxes of particle position and orientation. The aim of this paper is to derive ẋ and ṗ,
from the forces and torques that act on and between particles.

2.2. Force balance
Each particle in the active network obeys Newton’s laws of motion. That is

ġi =
∑

j

Fij + F(drag)
i , (5)

where gi is the particle momentum, and Fij is the force that particle j exerts on particle i. Moreover, F(drag)
i is

the drag force between the particle i and the fluid in which it is immersed. Momentum conservation implies

2



New J. Phys. 23 (2021) 013012 S Fürthauer et al

Fij = −Fji. We are interested in systems where the direct particle–particle interactions are short ranged. This
means that Fij �= 0 only if |xi − xj| < d, where d is an interaction length that is small (relative to system
size).

The momentum density is defined by

g =
∑

i

δ(x − xi)gi (6)

which, using equation (5), obeys

∂t g +∇ ·
∑

i

δ(x − xi)vigi =
∑

i,j

δ(x − xi)Fij +
∑

i

δ(x − xi)F(drag)
i , (7)

where vi = ẋi is the velocity of the ith particle. Note also that vigi denotes an outer product and is a second
rank tensor, see appendix A. The terms on the left-hand side of equation (7) are inertial, and in the
overdamped limit, relevant to the systems studied here, they are vanishingly small. Interactions between
particles are described by the first term on the right-hand side of equation (7) and generate a momentum
density flux Σ (the stress tensor) through the material. Using that d is small, so that particle–particle
interactions are short-ranged, gives

∑
i,j

δ(x − xi)Fij =
1

2

∑
i,j

(
δ(x − xi) − δ(x − xj)

)
Fij

= −∇ ·
∑

i,j

δ (x − xi)
xi − xj

2
Fij +O(d3)

= ∇ ·Σ. (8)

where

Σ = −
∑

i,j

δ (x − xi)
xi − xj

2
Fij +O(d3). (9)

Note that equation (9) does not necessarily produce a symmetric stress tensor. Force couples for which Fij

and xi − xj are not parallel generate antisymmetric stress contributions, since these couples are not torque
free. We discuss how to reconcile this with angular momentum conservation in appendix E. The drag force
density is

f =
∑

i

δ(x − xi)F(drag)
i , (10)

and after dropping inertial terms, the force balance reads

∇ ·Σ+ f = 0, (11)

and the total force on particle i obeys ∑
j

Fij + F(drag)
i = 0. (12)

This completes the discussion of the force balance of the system. We next discuss angular momentum
conservation.

2.3. Torque balance
The total angular momentum of particle i, is given by

�(tot)
i = �i + xi × gi, (13)

and is conserved, where �i is its spin angular momentum and its xi × gi its orbital angular momentum.
Newton’s laws imply that

�̇i =
∑

j

Tij + T(drag)
i , (14)

where Tij is the torque exerted by particle j on particle i, in the frame of reference moving with particle i,

and T(drag)
i is the torque from interaction with the medium, in the same frame of reference. Importantly,

since the total angular momentum is a conserved quantity, the total torque transmitted between particles
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Tij + xi × Fij = −Tji − xj × Fji is odd upon exchange of the particle indices i and j. Taking a time derivative
of equation (13) and using equation (5) leads to the torque balance equation for particle i∑

j

(
Tij + xi × Fij

)
+ T(drag)

i + xi × F(drag)
i = 0, (15)

and thus ∑
j

Tij + T(drag)
i = 0, (16)

where we ignored the inertial term vi × gi and used equation (12). The angular momentum fluxes
associated with spin, orbital and total angular momentum are discussed in appendix E for completeness.

2.4. The special case of rod-like filaments
We now specialize to rod-like particles, such as the microtubules and actin filaments that make up the
cytoskeleton. In particular, we calculate the objects Fij, Tij, and Σ from prescribed interaction forces and
torques along rod-like particles.

2.4.1. Forces
Again, filament i is described by it center of mass xi and orientation vector pi. All filaments are taken as
having the same length L, and position along filament i is given by xi + sipi, where si ∈ [−L/2, L/2] is the
signed arclength. We consider the vectorial momentum flux from arclength position si on filament i to
arclength position sj on filament j

fij = fij

(
si, sj

)
, (17)

where fij = −fji and having dimensions of force over area, i.e. a stress. Here we focus on forces generated by
crosslinks; see figure 1(a). The total force between two particles is

Fij =
⌊
δ(x − xj − sjpj)fij

⌉ij

Ω(xi+sipi)
, (18)

where the brackets �· · · �ij
Ω(xi)

denote the operation

�φ�ij
Ω(xi)

=

L
2∫

− L
2

dsi

L
2∫

− L
2

dsj

∫
Ω(xi)

dx3 φ, (19)

where φ is a dummy argument and Ω is a sphere whose radius is the size of a cross-linker (i.e., d, the
interaction distance). With the definition equation (19), the operation �· · · �ij

Ω(xi+sipi)
integrates its

argument over all geometrically possible crosslink interactions, between filaments i and j; see figure 1(b). By
Taylor expanding and keeping terms up to second order in the filament arc length (si, sj), we find

F(tot)
i =

∑
j

⎢⎢⎢⎢⎣
⎧⎪⎨
⎪⎩

1
+(sipi − sjpj) · ∇

+
1

2
(s2

i pipi + s2
j pjpj) : ∇∇

⎫⎪⎬
⎪⎭ δ(x − xj)fij

⎤
⎥⎥⎥⎥

ij

Ω(xi)

+ F(drag)
i

(20)

and the network stress

Σ = −1

2

∑
i,j

⌊
δ(x − xi)δ(x′ − xj)(

xi − xj + sipi − sjpj

)
fij

⌉ij

Ω(xi)

, (21)

where we used that fij = −fji.

2.4.2. Torques
Similarly, the angular momentum flux that crosslinkers exert between filaments can be written as

tij = t̄ij

(
si, sj

)
+ sipi × fij, (22)

which dimensionally is a torque per unit area. Thus

Tij = �δ(x − xj − sjpj)tij�ij
Ω(xi+sipi)

(23)
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Figure 1. (a) Interaction between two cytoskeletal filament i and j via a molecular motor. Filaments are characterized by their
positions xi, xj , their orientations pi, pj , and connect by a motor between arc-length position si, sj. A motor consist of two heads
that can be different (circle, pentagon) and are connected by a linker (black zig-zag) of length R. (b) The total force on filament i
is given by the sum of the forces exerted by all a (circle) and b (pentagon) heads, which connect the filament into the network.
The shaded area shows all geometrically accessible positions that can be crosslinked to the central (black) filament.

which leads to

T(tot)
i = T(drag)

i +
∑

j

⎢⎢⎢⎢⎣
δ(x − xj)

(̄
tij + sipi × fij

)
+(sipi − sjpj) · ∇δ(x − xj)

(̄
tij + sipi × fij

)
+

1

2
(s2

i pipi + s2
j pjpj) : ∇∇δ(x − xj)̄tij

⎤
⎥⎥⎥⎥

ij

Ω(xi)

. (24)

In the following we will consider crosslinks for which t̄ij = 0, for simplicity.

3. Filament–filament interactions by crosslinks and collisions

We next discuss how filaments in highly crosslinked networks exchange linear and angular momentum. Two
types of interactions are important here: interactions mediated by crosslinking molecules, which can be
simple static linkers or active molecular motors, and steric interactions. We start by discussing the former.

3.1. Crosslinking interactions
To describe crosslinking interactions, we propose a phenomenological model for the stress fij that
crosslinkers exert between the attachment positions si and sj on filaments i and j.

fij = K(si, sj, t)
(

xi + sipi − xj − sjpj

)
+ γ(si, sj, t)

(
vi + siṗi − vj − sjṗj

)
+
[
σ(si, sj, t)pi − σ(sj, si, t)pj

]
. (25)

5



New J. Phys. 23 (2021) 013012 S Fürthauer et al

The first term in this model, with coefficient K, is proportional to the displacement between the attachment
points, xi + sipi − xj − sjpj, and captures the effects of crosslink elasticity and motor slow-down under
force. The second term, with coefficient γ, is proportional to vi + siṗi − vj − sjṗj, and captures friction-like
effects arising from velocity differences between the attachment points. The last terms are motor forces that
act along filament orientations pi and pj, with their coefficients σ having dimensions of stress. Additional
forces proportional to the relative rotation rate between filaments, ṗi − ṗj, are allowed by symmetry, but are
neglected here for simplicity.

In general, the coefficients K, γ, and σ are tensors that depend on time, the relative orientations between
filament i and j and the attachment positions si, sj on both filaments. In this work, we take them to be scalar
and independent of the relative orientation, for simplicity. Generalizing the calculations that follow to
include the dependences of K, γ and σ on pi and pj is straightforward but laborious and will be discussed in
a subsequent publication. We emphasize that equation (25) is a statement about the expected average effect
of crosslinks in a dense local environment and is not a description of individual crosslinking events.

Inserting equation (25) into equations (20), (21) and (24) we find that the stresses and forces collectively
generated by crosslinks depend on sij-moments of the form

Xnm(x) = �X(si, sj)sn
i sm

j �
ij
Ω(x), (26)

where X = K, γ, or σ. We refer to these as crosslink moments. In principle, given equations (20), (21) and
(25) only the moments X00, X01, X10, X11, X20, X02, X21, and X12, contribute to the stresses and forces in the
filament network. We further note that X11, X21 and X12 are O(L4), and can thus be neglected without
breaking asymptotic consistency. Moreover, X20 and X02 can be expressed in terms of lower order moments
since X20 = X02 +O(L4) = (L2/12)X00 +O(L4).

Finally, by construction K(si, sj) = K(sj, si) and γ(si, sj) = γ(sj, si), and thus γ01 = γ10 ≡ γ1 and
K01 = K10 ≡ K1. To further simplify our notation, we introduce X0 = X00. Explicit expressions for the seven
crosslinking moments that contribute to the continuum theory are given in the appendix D. There we also
discuss how to define crosslink moments for a distribution of filaments with varying length. In summary, in
the long wave length limit all forces and stresses in the network can be expressed in terms of just a few
moments, K0, K1, γ0, γ1,σ0,σ01,σ10. How different crosslinker behavior set these moments will be discussed
in section 5.

3.2. Sterically mediated interactions
In addition to crosslinker mediated forces and torques, steric interactions between filaments generate
momentum and angular momentum transfer in the system. We model steric interactions by a free energy
E =

∫
Ve(pi, . . . , xi, . . .)d3x which depends on all particle positions and orientations. The steric force is

F̄i = − δE

δxi
, (27)

and the torque acting on it is

T̄i = − δE

δpi

. (28)

This approach is commonly used throughout soft matter physics [32, 33]. Common choices for the free
energy density e are the ones proposed by Doi and Edwards [34], or De Gennes and Prost [35].

4. Continuum theory for highly crosslinked active networks

In the previous sections we derived a generic expression for the stresses and forces acting in a network of
filaments interacting through local forces and torques, and proposed a phenomenological model for
crosslink-driven interactions between filaments. We now combine these two and obtain expressions for the
stresses, force, and torques acting in a highly crosslinked filament network, and from there derive equations
of motion for the material. We start by introducing the coarse-grain fields in terms of which our theory is
phrased.

4.1. Continuous fields
The coarse grained fields of relevance are the number density,

ρ =
∑

i

δ(x − xi), (29)

6
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the velocity v = 〈vi〉, the polarity P = 〈pi〉, the nematic-order tensor Q = 〈pipi〉, and the third and fourth
order tensors T = 〈pipipi〉, and S = 〈pipipipi〉. Here the brackets 〈·〉 signify the averaging operation

ρ 〈φi〉 =
∑

i

δ(x − xi)φi, (30)

where φi is a dummy variable. Furthermore, we define the tensors j = 〈pi (vi − v)〉, J = 〈pipi (vi − v)〉,
H = 〈piṗi〉, and the rotation rate ω = 〈ṗi〉.

4.2. Stresses
The presence of crosslinkers generates stresses in the material which, through equation (21), depends on the
crosslinking force density equation (25). Following the nomenclature from equation (25), we write the
material stress as

Σ = Σ(K) +Σ(γ) + Σ(V) + Σ̄, (31)

where

Σ(K) = −ρ2K0

(
αI +

L2

12
Q
)

, (32)

is the stress due to the crosslink elasticity,

Σ(γ) = −ρ2

(
η∇v + γ1j + γ0

L2

12
H
)

, (33)

is the viscous like stress generated by crosslinkers, and

Σ(V) = −ρ2 (ασ0∇P + σ10Q− σ01PP) (34)

is the stress generated by motor stepping. Here, we defined the network viscosity η = αγ0 and α = 3R2

10 .
Finally, the steric (or Ericksen) stress obeys the Gibbs Duhem Relation

∇ · Σ̄ = ρ∇μ+ (∇E) : Q. (35)

where μ = − δe
δρ

is the chemical potential, and E = − δe
δQ is the steric distortion field. An explicit definition

of Σ̄ and the derivation of the Gibbs Duhem relation are given in appendix F. Note that for simplicity, we
chose that the steric free energy density e depends only on nematic order and not on polarity.

4.3. Forces
We now calculate the forces acting on filament i. The total force Fi on filament i is given by

Fi = F(K)
i + F(γ)

i + F(V)
i + F̄i + F(drag)

i , (36)

where

F(K)
i = (∇ρ) · L2

12
K0(pipi −Q) − 1

ρ
∇ ·Σ(K), (37)

is the elasticity driven force

F(γ)
i = γ0ρ(vi − v) + γ1ρ(ṗi − ω)

+ γ1 (∇ρ) ·
[

pi (vi − v) − j − P (vi − v)
]

+
L2

12
γ0 (∇ρ) ·

[
piṗi −H

]
+

L2

12
γ0 (∇∇ρ) :

[
pipi (vi − v) − J +Q (vi − v)

]
− 1

ρ
∇ ·Σ(γ). (38)

is the viscous like force, and

F(V)
i = ρσ0(pi − P)

+ (∇ρ) ·
[
σ10

(
pipi −Q

)
− σ01

(
piP + Ppi − 2PP

)]
+

L2

12
σ0(∇∇ρ) :

[
pipipi +Qpi − pipiP − T

]
− 1

ρ
∇ ·Σ(V). (39)

7
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is the motor force. Here we introduced the shorthand: to denote two subsequent inner products, see
appendix A. Finally,

F̄i = −∇E
ρ

: (pipi −Q) − 1

ρ
∇ · Σ̄, (40)

is the steric force on filament i, where we again chose e to only depend on nematic order and not on
polarity.

4.4. Crosslinker induced torque
We next calculate the torques acting on filament i. The total torque acting on filament i is

Ti = T(γ)
i + T(V)

i + T̄i + T(drag)
i (41)

Note, that crosslinker elasticity does not contribute. Here

T(γ)
i = γ1ρpi × (vi − v) +

L2

12
γ0ρpi × ṗi

+
L2

12
γ0pi ×

(
pi · ∇ρ

)
(vi − v)

− L2

12
γ0ρpi × (pi · ∇v) (42)

and

T(V)
i = −ρpi ×

(
σ01P +

L2

12
σ0pi · ∇P

)
− L2

12
σ0pi × (pi · ∇ρ)P (43)

are the viscous and motor torques, respectively. Steric interactions contribute to the torque

T̄i = pi ×
E
ρ
· pi. (44)

4.5. Equations of motion
To find equations of motion for the highly crosslinked network, we use equations (36)–(39), and obtain

vi − v = −σ0

γ0
(pi − P) − 1

ργ0

(
F(drag)

i − f /ρ
)
+O

(
L2
)

, (45)

which will be a useful low-order approximation to vi − v. Note too that we have dropped steric forces, since
∇E/ρ scales with the inverse of the system size, which is much larger than L. Using equation (45) in
equation (41) we find the equation of motion for filament rotations,

ṗi =
(
I − pipi

)
·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi · U
+

12

γ0L2ρ2
pi · E

+
12

γ0L2
A(P)P

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (46)

where we neglect drag mediated terms, which are subdominant at high density, for simplicity. A detailed
calculation, and expressions which includes drag terms, is given in appendix C. Here,

U = ∇v +
σ0

γ0
∇P, (47)

is the active strain rate tensor, which consists of the strain rate and vorticity ∇v and an active polar
contribution ∇P. Moreover

A(P) = σ01 − σ0
γ1

γ0
. (48)

is the polar activity coefficient. The filament velocities are given by

vi − v = −σ0

γ0

(
pi − P

)
− γ1

γ0

(
(pi − P) · U − (pipipi − T ) : U

)
− 12γ1

L2ρ2γ2
0

(
(pi − P) · E − (pipipi − T ) : E

)
+

12γ1

L2γ2
0

A(P)
(

pipi −Q
)
· P, (49)

where we used equations (45) and (46) in equation (36). In equation (49), we ignored terms proportional
to density gradients, for simplicity. The full expression is given in appendix C. After some further algebra

8
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(see appendix C), we arrive at an expression for the material stress in terms of the current distribution of
filaments,

Σ = −ρ2
(
χ : U + αK0I + A(Q)Q− A(P)T · P

)
+Σ(S), (50)

where

χαβγμ = ηδαγδβμ +
L2

12
γ0

(
Qαγδβμ−Sαβγμ

)
, (51)

is the anisotropic viscosity tensor,

A(Q) = σ10 − σ0
γ1

γ0
+

L2

12
K0 (52)

is the nematic activity coefficient, and

Σ(S)
αβ = Σ̄αβ −

(
Qαγδβμ−Sαβγμ

)
Eγμ. (53)

is the steric stress tensor. Together equations (2), (46), (49) and (50) define a full kinetic theory for the
highly crosslinked active network.

5. Designing materials by choosing crosslinks

Equations (2), (46), (49) and (50) define a full kinetic theory for highly crosslinked active networks. This
theory has the same active stresses known from symmetry based theories for active materials [7, 11, 36] and
thus can give rise to the same rich phenomenology. Since our framework derives these stresses from
microscale properties of the constituents of the material it enables us to make predictions on how the
microscopic properties of the network constituents affect its large scale behavior. We first discuss how
motor properties set crosslink moments in equation (25). We then study how these crosslink properties
impact the large scale properties of the material.

5.1. Tuning crosslink-moments
The coefficients in equation (25) arise from a distribution of active and passive crosslinks that act between
filaments. Consider an ensemble of crosslinking molecules, each consisting of two heads a and b, joined by a
spring-like linker; see figure (2). For any small volume in an active network, we can count the number
densities ξa(s), and ξb(s) of a and b heads of doubly-bound crosslinks that are attached to a filament at
arc-length position s. In an idealized experiment ξa(s) and ξb(s) could be determined by recording the
positions of motor heads on filaments. The number-density ξab(si, sj) of a heads at position si on
microtubule i connected to b heads at position sj on microtubule j is then given by

ξab(si, sj) =
ξa(si)ξb(sj)

N(i)
b (si)

, (54)

where N(i)
b (si) counts the b heads that an a-head attached at position si on filament i could be connected to

given the crosslink size. It obeys

N(i)
b (si) =

∑
k �=i

L/2∫
−L/2

dsk

∫
Ω(xi+sipi)

dx3 ξb(sk)δ(xk + skpk − x). (55)

Analogous definitions for ξba(si, sj) and N(i)
a (si) are implied. It follows naturally that ξ(si, sj) = ξab(si, sj)

+ ξba(si, sj) is the total number density of crosslinks acting between filaments i and j at the arclength
positions si, sj.

Now let Va(s), Vb(s) be the load-free velocities of motor-heads a, b moving along filaments. Here,
Va(s), Vb(s) are functions of the arc-length position s. Like ξa and ξb, they are in principle measurable. With
these definitions, the force per unit surface that attached motors exert is

fij = −Γξ(si, sj)
(

vi + siṗi − vj + sjṗj

)
− κξ(si, sj)

(
xi + sipi − xj + sjpj

)
− Γ

([
ξab(si, sj)Va(si) + ξba(si, sj)Vb(si)

]
pi

)
+ Γ

([
ξab(sj, si)Va(sj) + ξba(sj, si)Vb(sj)

]
pj

)
, (56)
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Figure 2. (a, b) Populations of crosslink heads are characterized by the density with which they bind a filament along its
arclength s and the speed at which they move when force free. Two different head types, one with non-uniform speed but
uniform density (a) another with uniform speed and non-uniform density (b) are shown. In (c) we list some possible crosslink
heads. Red and Blue lines illustrate the change of crosslink speed and density with s, respectively. In (d) we illustrate example
crosslinks which consist of two heads and a linker.

where Γ is an effective linear friction coefficient between the two attachment points and κ is an effective
spring constant. They depend on the microscopic properties of motors, filaments, and the concentrations of
both and their regulators. In general, Γ and κ are second rank tensors, which depend on the relative
orientations of filaments. Here we take them to be scalar, for simplicity and consistency with earlier
assumptions. By comparing to equation (25) we identify

γ(si, sj) = −Γξ(si, sj), (57)

K(si, sj) = −κξ(si, sj), (58)

and
σ(si, sj) = −Γξab(si, sj)Va(si) + Γξba(si, sj)Vb(si). (59)

Using equations (57)–(59), we now discuss some important classes of crosslinking molecules. We
consider crosslinks whose heads can be motile or non-motile, the binding and walking properties can act
uniformly or non-uniformly along filaments, and the two heads of the crosslink can be the same
(symmetric crosslink) or different (non-symmetric crosslink). Figure 2 maps how varying crosslink types
can be constructed, while table 1 lists the moments to which different classes of crosslinks contribute.

Non-motile crosslinks are crosslinks that do not actively move, i.e. Va = Vb = 0. Examples of non-motile
crosslinks in cytoskeletal systems are the actin bundlers such as fascin, or microtubule crosslinks such as
Ase1 [8]. While these types of crosslinks are not necessarily passive, since the way they binding or unbind
can break detailed balance, that their attached heads do not walk along filaments implies that
σ0 = σ10 = σ01 = 0. Non-motile crosslinks change the material properties of the material by contributing
to the crosslink moments γ0, γ1 and K0, K1. Some non-motile crosslinks bind non-specifically along
filaments they interact with, giving uniform distributions. For these γ1 = K1 = 0. Others preferentially
associate to filament ends, and thus bind non-uniformly. For these γ1 and K1 are positive. Note that the two
heads of a non-motile crosslink can be identical (symmetric) or not (non-symmetric). Given the symmetric
structure of equations (57) and (58) mechanically a non-symmetric non-motile crosslink behaves the same
as a symmetric non-motile crosslink. And symmetric motor crosslinks are motor molecules whose two heads
have identical properties, i.e. Va = Vb = V and ξa = ξb = ξ. Examples are the microtubule motor molecule
Eg-5 kinesin, and the Kinesin-2 motor construct popularized by many in-vitro experiments [37].
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Table 1. Table summarizing which crosslink moments different crosslink types generate.

γ0, K0 γ1, K1 σ0 σ10 σ01

Symmetric uniform non-motile Yes No No No No

Non-symmetric uniform non-motile Yes Yes No No No

Symmetric uniform motor Yes No Yes No No

Symmetric non-uniform motor Yes Yes Yes Yes Yes

σ10 = σ1 σ01 = σ1

Non-symmetric non-uniform motor Yes Yes Yes Yes Yes

Symmetric motors contribute to the large-scale properties of the material by generating motor forces. In
particular they contribute to the crosslink moments σ0, σ10, and σ01. From equation (59) it is easy to see
that σ0 = V0γ0 + V1γ1/L2, where we defined the moments of the motor velocity V(si, sj) using
equation (26). Some symmetric motor proteins preferentially associate to filament ends, and display
end-clustering behavior, where their walking speed depends on the position at which they are attached to
filaments. Motors that do either of these also generate a contribution to σ10 and σ01. Since both motor
heads are identical we have σ10 = σ01 ≡ σ1 and from equation (59) we find that σ1 = γ1V0 + V1γ0.

Non-symmetric motor crosslinks are motor molecules whose two heads have differing properties. An
example is the microtubule-associated motor dynein, that consists of a non-motile end that clusters near
microtubule minus-ends and a walking head that binds to nearby microtubules whenever they are within
reach [20, 38]. A consequence of motors being non-symmetric is that σ10 �= σ01. Since non-symmetric
motors can break the symmetry between the two heads in a variety of ways we spell out the consequences
for a few cases. Let us first consider a crosslinker with one head a that acts as a passive crosslink (Va = 0)
and a second head b that acts as a motor, moving with the stepping speed Vb = V. For such a crosslink
σ0 = γ0V0/2. If both heads are distributed uniformly along filaments and their V is position independent
then σ01 = σ10 = 0. If the walking b-head is distributed nonuniformly (ξb = ξb(s), ξa = constant) then
σ10 = γ1V0 and σ01 = 0. Conversely, if the static a-head has a patterned distribution (ξa = ξa(s), ξb =
constant) then σ01 = γ1V0,σ10 = 0. Finally, we note that if both heads are distributed uniformly along the
filament (ξa = ξb = constant), but the walking b-head of the motor changes its speed as function of
position then σ10 = V1γ0/2 and σ01 = 0.

Note that stresses and forces are additive. Thus it may be possible to design specific crosslink moments
by designing mixtures of different crosslinkers. For instance mixing a non-motile crosslink that has specific
binding to a filament solution might allow to change just γ0 and γ1 in a targeted way. We will elaborate on
some of these possibilities in what follows.

5.2. Tuning viscosity
We now discuss how microscopic processes shape the overall magnitude of the viscosity tensor χ. From
equation (51) and remembering that η = 3R2/10γ0, it is apparent that the overall viscosity of the material
is proportional to the number of crosslinking interactions and their resistance to the relative motion of
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filaments, quantified by the friction coefficient ρ2γ0. Furthermore, γ0 itself scales as the squared filament
length L, and the cubed crosslink size R (see the definition in appendix D), which, with ρ2, sets the overall
scale of the viscosity as ρ2L2R3.

We next show how micro-scale properties of network constituents shape the anisotropy of χ; see
equation (51). To characterize this we define the anisotropy ratio a as

a =
L2γ0

12η
=

5

18

L2

R2
, (60)

which is the ratio of the magnitudes of the isotropic part of χαβγμ, that is ηδαγδβμ, and its anisotropic part
γ0L2/12(Qαγδβμ − Sαβγμ). Most apparently the anisotropy ratio will be large if the typical filament length L
is large compared to the motor interaction range R. This is typically the case in microtubule based systems,
as microtubules are often microns long and interact via motor groups that are a few tens of nano-meters in
scale [8]. Conversely, in actomyosin systems filaments are often shorter (hundreds of nano-meters) and
motors-clusters called mini-filaments, can have sizes similar to the filament lengths [8]. The anisotropy of
the viscous stress is not exclusive to active systems and has been described before in the context of similar
passive systems, such as liquid crystals and liquid crystal polymers [33–35].

5.3. Tuning the active self-strain
The viscous stress in highly crosslinked networks is given by χ : U , where U = ∇v + (σ0/γ0)∇P takes the
role of the strain-rate in passive materials, but with an active contribution (σ0/γ0)∇P. Thus, internally
driven materials can exhibit active self-straining.

In particular a material in which each filament moves with the velocity vi = −σ0/γ0pi + C, where C is a
constant vector that sets the net speed of the material in the frame of reference, has U = 0, and thus zero
viscous stress. In such a material filaments can slide past each other at a speed σ0/γ0 without stressing the
material. Notably, the sliding speed is independent of the local polarity and nematic order of the material
[30].

The crosslink moments that contribute to the active straining behavior are σ0 and γ0. In active filament
networks with a single type of crosslink σ0/γ0 � V0, regardless of crosslink concentration. Thus for
single-crosslinker systems, the magnitude of self-straining is independent of the motor concentration [30].

Self-straining can be tuned in mixtures of crosslinks. For instance the addition of a non-motile
crosslinker can increase γ0, while leaving σ0 unchanged. In this way self-straining can be relatively
suppressed. In table 2 we plot the expected active strain-rate for materials actuated by mixtures of immotile
and motor crosslinks. In such a material γ0 = γ(M)

0 + γ(X)
0 where γ(M)

0 denotes the part of γ0 induced by
motile crosslinkers and γ(X)

0 denotes that from non-motile crosslinkers. The resulting velocity Vslide with
which a filament slides through the material will scale as Vslide � γ(M)

0 /(γ(M)
0 + γ(X)

0 ); see table 2.

5.4. Tuning the active pressure
Many active networks spontaneously contract [38] or expand [37]. We now study the motor properties that
enable these behaviors.

An active material with stress free boundary conditions, can spontaneously contract if its self-pressure,

Π = Tr
(
Σ+ ρ2χ : U

)
. (61)

is negative. Conversely the material can spontaneously extend if Π is positive. We can also write

Π = Π(A) +Π(S), (62)

where Π(S) = Tr
(
Σ(S)

)
is the sterically mediated pressure, and Π(A) is the activity driven pressure (or active

pressure) given by
Π(A) = −ρ2

(
αK0 + A(Q) − A(P)|P|2

)
. (63)

see equation (50). Here and in the following we approximated Tr(T · P) � |P|2 for simplicity. We ask which
properties of crosslinks set the active pressure and how its sign can be chosen.

We first discuss how interaction elasticity impacts the active pressure Π(A) in the absence of motile
crosslinks, i.e. when σ0 = σ10 = σ01 = 0. In this case, equation (63) simplifies to
Π(A) = −ρ2(α+ L2/12)K0, where we used equation (52). Thus, even in the absence of motile crosslinks,
active pressure can be generated. This can be tuned by changing the effective spring constant K0. We note
that Π(A) +Π(S) = 0 when crosslink binding–unbinding obeys detailed balance and the system is in
equilibrium. The moment K0 can have either sign when detailed balance is broken. Microscopically this
effect could be achieved, for instance, by a crosslinker in which active processes change the rest length of a
spring-like linker between the two heads once they bind to filaments.
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Table 2. Active pressure and strain generated by different crosslink types and mixtures.
In the plots pertaining to the active strain rate γ0 = γ(M)

0 + γ(X)
0 where γ(M)

0 denotes the
part of γ0 induced by mobile and γ(X)

0 denotes contribution from non-mobile
crosslinkers. The filament sliding velocity expected in a stress free system is
Vslide = σ0/γ0. Here we normalize it by its maximum. Moreover, S̄ = |Π(A)/q| is the
magnitude of the motor-stepping induced axial stress, i.e. of the axial stress in the limit
K0 → 0.

Mixture Active strain, σ0/γ0

Active pressure, Π(A)

axial stress, S̄

σ0
γ0

= V0 No

σ0
γ0

= V0 No

σ0
γ0

=
Va

0 +Vb
0

2

No

We next discuss the contributions of motor motility to the active pressure. To start, we study a simplified
apolar (i.e. P = 0) system where K = 0. In such a system the active pressure is given by

Π(A) = −ρ2

(
σ10 − σ0

γ1

γ0

)
. (64)

We ask how motor properties set the value and sign of this parameter combination.
We first point out that generating active pressure by motor stepping requires that either σ10 or γ1 are

non-zero. This means that generating active pressure requires breaking the uniformity of binding or
walking properties along the filament. A crosslink which has two heads that act uniformly can thus not
generate active pressure on its own. However, when operating in conjunction with a passive crosslink that
preferentially binds either end of the filament, the same motor can generate an active pressure. This
pressure will be contractile if the non-motile crosslinks couple the end that the motor walks toward (γ1 and
σ0 have the same sign) and extensile if they couple the other (γ1 and σ0 have opposite signs). In summary, a
motor crosslink that acts the same everywhere along the filaments it couples does not generate active
pressure on its own. However, it can do so when mixed with a passive crosslink that acts non-uniformly.

We next ask if a system with just one type of non-uniformly acting crosslink can generate active
pressure. To start, consider symmetric motor crosslinks, i.e. a motor consisting of two heads with identical
(but non-uniform) properties. We then have σ01 = σ10 = γ1V0 + γ0V1 and σ0 = V0γ0 + V1γ1/L2. Using
this in equation (64) and dropping the term proportional to γ2

1 (higher order in this case) we find that such
symmetric motor crosslinks generate no contribution to the active pressure when operating alone. However
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when operating in concert with a non-motile crosslink, even one that binds filaments uniformly, they can
generate and active pressure. The sign of the active pressure is set by the particular asymmetry of motor
binding and motion. The system is contractile if motors cluster or speed up near the end toward which they
walk, and extensile if they cluster or accelerate near the end that they walk from. Our prediction that many
motor molecules can only generate active pressure in the presence of an additional crosslink, might explain
observation on acto-myosin gels, which have been shown to contract only when combined a passive
crosslink operate in concert with the motor myosin [39].

We next ask if non-symmetric motor crosslinks can generate active pressure. Consider a crosslink with one
immobile and one walking head. For such a crosslink σ0 = γ0V0/2. If the immobile head preferentially
binds near one filament end, while the walking head attaches everywhere uniformly, then σ10 = γ1V0 and
σ01 = 0. For such a motor we predict an active pressure proportional to V0/2. The active pressure will be
contractile if the static ends bind near the end that the motor head walks to and extensile if the situation is
reversed. The motor dynein has been suggested to consist of an immobile head that attaches near
microtubule minus ends and a walking head that grabs other microtubules and walks toward their minus
ends. Our theory suggests that this should lead to contractions, which is consistent with experimental
findings [39].

After having discussed the effects of motor stepping on the active pressure in systems with P = 0, we ask
how the situation changes in polar systems. In polar system an additional contribution, −(σ01 − γ1

γ0
σ0)|P|2,

exists. For symmetric motors, where σ01 = σ10 this implies that the active pressure generated by a network
of symmetric motors and passive crosslinks is strongest in apolar regions of the system and subsides in
polar regions, since the polar and apolar contributions to the active stress appear in equation (50) with
opposite signs. We plot the magnitude of the active pressure Π(A) � 1 − |P|2 as a function of |P| in table 2.
This is reminiscent of the behavior predicted in the frameworks of a sparsely crosslinked system in [21]. In
contrast the effects of non-symmetric motors can be enhanced in polar regions. Consider again, the
example of a motor with one static head that preferentially binds near one of the filament ends and a
mobile head that acts uniformly. For this motor σ10 = γ1V0 and σ01 = 0 and σ0 = γ0V0/2. It is thus
predicted to generate twice the amount of active pressure in a polar network than in an apolar one and
Π(A) � (1 + |P|)/2, see the table 2 for a plot of the active pressure Π(A) as a function of |P|. This is
reminiscent of the motor dynein in spindles, which is though to generate the most prominent contractions
near the spindle poles, which are polar [40].

Finally, we ask how filament length affects the active pressure. Looking at the definitions of the nematic
and polar activity equations (48) and (52) and remembering the definition and scaling of the coefficient in
there (see appendix D), we notice that the active pressure scales as L4. Since the viscosity scaled with L2, this
predicts that systems with shorter filaments contract slower than systems with longer filaments. This effect
has observed for dynein based contractions in vitro [20].

5.5. Tuning axial stresses, buckling and aster formation
Motors in active filament networks generate anisotropic (axial) contributions to the stress, which can lead
to large scale instabilities in materials with nematic order [3, 26, 36, 41]. At larger active stresses, nematics
are unstable to splay deformations in systems that are contractile along the nematic axis, and to bend
deformations in systems that are extensile along the nematic axis [7, 36]. In both cases, the instabilities set
in when the square root of ratio of the elastic (bend or splay) modulus that opposes the deformation to the
active stress—also called the Fréedericksz length—becomes comparable to the systems size. We now discuss
which motor properties control the emergence of these instabilities, and how a system can be tuned exhibit
bend or splay deformations. For this we ask how axial stresses, which are governed by the activity
parameters A(Q) and A(P), are set in our system.

The magnitude S of the axial stress along the nematic axis is given by

S = −ρ2q
(
A(Q) −A(P)|P|2

)
, (65)

where we defined the nematic order parameter q, as the largest eigenvalue of Q− Tr(Q)I/3; see
equation (50). The axial stress is contractile along the nematic axis if S is positive and extensile if S is
negative. Comparing equations (63) and (65) we find that S = q(Π(A) + ρ2αK0) and in the limit where
K0 → 0, where motor elasticity is negligible, S = qΠ(A). We discussed how Π(A) is set for different types of
crosslinks in the previous section; see table 2.

The prototypical active nematic [37] which consists of apolar bundles of microtubules actuated by the
kinesin motors and is axial extensile. In our theory, an axial extensile stress (i.e. S < 0) in an apolar system

(P = 0) implies that A(Q) = σ10 − σ0
γ1
γ0

+ L2

12 K0 > 0. This can be achieved either by crosslinks that act
uniformly (i.e. σ10 − σ0

γ1
γ0

= 0) and generate a spring like response that induces K0 > 0 or by crosslinks
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that have non-uniform motor stepping behavior which generates σ10 − σ0
γ1
γ0

> 0. The latter implies either a
non-symmetric motor crosslinks, or the presence of more than one kind of crosslinks, as was discussed
more extensively earlier in the context of active pressure. At high enough active stress we expect systems
with negative S to become unstable toward buckling. This has been observed in [42, 43].

Conversely axial contractile behavior can be achieved if either K0 < 0 or σ10 − σ0
γ1
γ0

< 0. At high
enough active stress, such systems can become unstable toward an aster forming transition, as seen in [38].

Note that S � Π(A) + ρ2αK0, implies that S and Π(A) need not be the same if K0 �= 0. In particular when
Π(A) and K0 have opposite signs systems can exist, which are axially extensile while being bulk contractile
and vice versa.

We finally note that the magnitude of axial stresses changes if the system transitions from apolar to
polar, if the origin of the axial stresses is motor stepping but not if the origin of the axial stresses is the
effective spring like behavior of motor, since A(Q), but not A(P), depends on K0, see equations (48) and
(52). In systems in which the active stress is generated by the stepping of symmetric motor-crosslink, |S| is
highest nematic apolar phase (|P| = 0), while systems made from non-symmetric crosslinks generate the
most stress when polar (|P| = 1); see table 2. This opens the possibility that a system can overcome the
threshold toward an instability when its other dynamics drives it from nematic apolar to polar
arrangements or vice versa. We suggest that the buckling instabilities discussed in [42, 43] should be
interpreted in this light.

6. Discussion

In this paper, we asked how the properties of motorized crosslinkers that act between the filaments of a
highly crosslinked polymer network set the large scale properties of the material.

For this, we first develop a method for quantitatively stating what the properties of motorized crosslinks
are. We introduce a generic phenomenological model for the forces that crosslink populations exert between
the filaments which they connect; see equation (25). This model describes forces that are (i) proportional to
the distance (K), and (ii) the relative rate of displacement (γ). Finally (iii) it describes the active motor
forces (σ) that crosslinks can exert. Importantly, forces from crosslinkers (K, γ,σ) can depend on the
position on the two filaments which they couple. This allows the description of a wide range of motor
properties, such as end-binding affinity, end-dwelling, and even the description of non-symmetric
crosslinks that consist of motors with two heads of different properties.

We next derived the stresses and forces generated on large time and length scale, given our
phenomenological crosslink model. We find that the emergent material stresses depend only on a small set
of moments; see equation (26) of the crosslink properties. These moments are effectively descriptions of the
expectation value of the force exerted between two filaments given their positions and relative orientations.
The resulting stresses, forces, and filament reorientation rates [equations (46), (49) and (50)] recover the
symmetries and structure predicted by phenomenological theories for active materials, but beyond that
provide a way of identifying how specific micro-scale processes set specific properties of the material.

We discussed how four key aspects of the dynamics of highly crosslinked filament networks can be tuned
by the micro-scale properties of motors and filaments. In particular we discussed how (i) the highly
anisotropic viscosity of the material is set; (ii) how active self-straining is regulated; (iii) how contractile or
extensile active pressure can be generated; (iv) which motor properties regulate the axial active nematic and
bipolar stresses, which can lead to large scale instabilities.

Our theory makes specific predictions for the effects of distinct classes of crosslinkers on cytoskeletal
networks. Intriguingly these predictions suggest explanations for phenomena experimentally seen, but
currently poorly understood. Experiments have shown that mixtures of actin filaments and myosin
molecular motors can spontaneously contract, but only in the presence of an additional passive crosslinker
[39]. Our theory allows us to speculate on explanations for this observation. In the crosslink classification
that we introduced, myosin, which form large mini-filaments, is a symmetric motor crosslink; see figure (2).
We find that symmetric motor crosslinks, which have two heads that act the same can generate contractions
only in the presence of an additional crosslinker that helps break the balance between γ1/γ0σ0 and σ01 in
the active pressure; see equation (64) and table 2. Since the addition of passive crosslinks also increases the
viscosity of the system, we predict a maximal rate of contraction at an intermediate concentration of passive
crosslinks, when the contributions to γ0 generated by passive and active components are equal. This
prediction is qualitatively consistent with ideas presented in [19, 39] but further work will be needed to
explore whether this connection can be made quantitative.

A second observation that was poorly understood prior to this work is the sliding motion of
microtubules in meiotic Xenopus spindles, which are the structures which segregate chromosomes during
the meiotic cell division. These spindles consist of inter-penetrating arrays of anti-parallel microtubules,
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which are nematic near the chromosomes, and highly polar near the spindle poles. In most of the spindle
the two anti-parallel populations of microtubules slide past each other, at near constant speed driven by the
molecular motor Eg-5 Kinesin, regardless of the local network polarity. Our earlier work [30] showed that
active self straining explains this polarity independent motion. The theory that we develop here provides
the tools to explore the behavior of different motors and motor mixtures which will allow us to investigate
the mechanism by which different motors in the spindle shape its morphology. This will help to explain
complex behaviors of spindles such as the barreling instability [13] that gives spindles their characteristic
shape or the observation that spindles can fuse [44].

Our theory provides specific predictions on how changing motor properties can change the properties
of the material which they constitute, it can enable the design of new active materials. We predict the
expected large scale properties of a material, in which an experimentalist had introduced engineered
crosslinks with controlled properties. With current technology, an experimentalist could engineer a motor
that preferentially attaches one of its heads to a specified location on a filament, while its walking head
reaches out into the network. Or, as has already been demonstrated in studies by the Surrey lab [45] the
difference in the rates of filament growth and motor walking speeds, could be exploited to generate different
dynamic motor distributions on filaments. This design space will provide ample room to experimentally
test our predictions, and use them to engineer systems with desirable properties. Finally recent advances in
optical control of motor systems [46] could be used to provide spatial control.

Another way of testing the predictions that we make here, would be to interrogate numerical models
using toolboxes such as Cytosim [47] or AMSOS [48]. In simulation, the distribution of crosslinks on
filaments, and thus the crosslink moments, can be directly measured. Given these moments, our theory
predicts the large scale dynamics of the system, which can then be compared to the actual observed
dynamics.

The theory presented here does however makes important simplifications. Importantly, we neglected
that the distribution of bound crosslinks on filaments themselves in general depends on the configuration
of the network. This means that the crosslink moments can themselves be functions of the local network
order parameters. Effects like this have been argued to be important for instance when explaining the
transition from contractile to extensile stresses in ordering microtubule networks [49] and the physics of
active bundles [28]. Such effects can be recovered when making the interactions K, γ,σ in the
phenomenological crosslink force model equation (25) functions of pi, and pj. This will be the topic of a
subsequent publication. Furthermore, our theory describes filaments as rigid line segments. This choice
neglects effects due to filament elasticity, their finite diameter, and helical microstructure. Actin filaments
and microtubules are structurally chiral, which has been shown to induce chiral interactions between
motors and filaments [50–52] and conjectured to generate active chiral stresses in the materials that they
form [11]. Further work will be needed to incorporate these effects in the framework that we establish here.
Finally, we constrain ourselves to a regime of transient crosslinks where we do not allow information to be
stored elastically; for an examination of systems where elastic time-scales are important see [29] and
references therein.

The model for crosslinker mediated filament–filament interactions that we propose in equation (25),
and upon which our theory is based, is a phenomenological description of the forces that molecular scale
agents collectively exert between the filaments which they connect. It allows us to categorize populations of
crosslinks, as collectively acting as passive or active, symmetric or asymmetric, and uniform or
non-uniform. We do however emphasize that our theory makes no predictions on how the coefficients in
equation (25) and the crosslink moments that follow, are set by microscopic interactions between molecules
on filaments. These interactions can be detailed and complicated and might, on a microscopic level, blur
the boundaries between active and passive interactions. For instance, the passive microtubule crosslink Ase1
is known to be actively transported along microtubules by kinesins [53], which is responsible for the
non-uniform distribution of Ase1 on microtubules. Thus, the distribution of the passive crosslink is set by
an active process. Another example are charged ions which can act as crosslinks, since cytoskeletal filaments
in suspension carry charge [54]. Thus they can contribute to the crosslink moments and the potential
energy e(xi, pi) for filament interactions; see appendix F. Studying these and other molecular scale processes
goes beyond this work. Ultimately to get a mechanistic handle on how the coefficients in equation (25) are
set, more microscopic models in the style of [55] need to be generalized and coarse grained.

Finally, we have ignored interactions of the active gel with the solvent in which it is suspended. In the
bulk of a highly crosslinked material this approximation is justified by the fact that the characteristic length
over which momentum transport through the gel occurs increases with the square-root of the gel density,
while the typical length scale over which momentum is transported through the solvent—the permeation
length—decreases with the gel density [30]. However, near the boundaries of an active gel structure
immersed in a solvent, the full expressions (given in appendix C) should be used to account for permeation
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effects, and the flow of the solvent needs to be solved for. We suspect that poroelastic effects, which result
from the interplay of the gel and its solvent are important to understand the physics of large cytoskeletal
structures such as microtubule asters [56] and spindles [57].

In summary, in this paper we derived a continuum theory for systems made from cytoskeletal filaments
and motors in the highly crosslinked regime. Our theory makes testable predictions on the behavior of the
emerging system, provides a unifying framework in which dense cytoskeletal systems can be understood
from the ground up, and provides the design paradigms, which will enable the creation of active matter
systems with desirable properties in the lab.
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Appendix A. Notation

For clarity we define our notational conventions here, using index notation. We start by defining the
generalized outer product between vectors a, b, c, . . . as

(abc . . .)αβγ... = aαbβcγ . . . (A1)

and the inner product between vectors as
a · b = aγbγ , (A2)

where summation over repeated indices is implied. This notation generalizes to tensors. The inner product
between the nth rank tensor A and the mth rank tensor B is given by

(A · B)α1,...,αn−1β1,...,βm−1 = Aα1,...,αn−1γBγβ1,...βm−1 , (A3)

and A · B is an m + n − 2nd rank tensor.
Finally, we use the shorthand: to denote the contraction

(A : B)α1,...,αn−2β1,...,βm−2 = Aα,...,αn−2μγBγμβ1,...,βn−2 . (A4)

Appendix B. Coarse graining distributions into functions

In this paper we often employ distributions. For instance the particle density ψ [see equation (1)] is defined
as

ψ(x, p) =
∑

i

δ(x − xi)δ(p − pi), (B1)

which is a distribution and not a smooth function. From such representations, it is straightforward to
construct, or to reinterpret these as, smooth (if short-handed) representations of fields. For simplicity,
consider a density of only positional coordinates

ψ(x) =
∑

i

δ(x − xi). (B2)

As an example, let C(|x|) be a nonnegative C∞ rapidly decaying function of unit mass (and hence having
units of inverse volume). The function δε(x) = ε−3C(|x|/ε) is then an approximate δ-function. We define a
smooth density through convolution with δε:

Ψ(x) =

∫
dx′3 δε(x − x′)ψ(x′) =

∑
i

δε(x − xi). (B3)

It is easy to check that Ψ again satisfies a Smoluchowski equation like equation (2):

∂tΨ+∇ · (ẋΨ) = 0 (B4)
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where
Ψ(x)ẋ =

∑
i

δε(x − xi)ẋi, (B5)

in analogy to equations (3) and (4). Upon adding the conformation variable p, another approximate
δ-function upon the unit p-sphere must be introduced (and so is without dimension), and equation (B2)
appropriately modified. One can make various interpretations in moving to smooth fields. One is that the
length-scale ε is a coarse-graining scale, much shorter than the system scale but nonetheless capturing many
particles within its span (see [20]).

We emphasize that the same line of argument holds for the definitions of all the distributions introduced
in the main text, which can trivially be changed into functions by explicitly carrying out a coarse graining
step. In the main text we choose to keep working with distributions, for simplicity. For a more exhaustive
treatment of coarse graining procedures for polymeric materials we refer the reader to [34].

Appendix C. Derivation of the equations of motion

In the following we derive the equations of motion for the highly crosslinked active network. We start by
using equations (24) and (45) and obtain

ṗi =
(
I − pipi

)
·
{

pi ·
(
U +

12

γ0L2

E
ρ2

)
+

12

γ0L2
A(P)P

}
− 1

ρ
T̄(drag)

i , (C1)

The torque due to drag with the medium is

T̄(drag)
i = T(drag)

i +
(
I − pipi

)
·
(

12

γ0L2
+ pi ·

∇ρ

ρ

)(
F(drag)

i − 1

ρ
f

)
. (C2)

This implies

ω = P ·
(
U +

12

γ0L2

E
ρ2

)
− T :

(
U +

12

γ0L2

E
ρ2

)
+

12

L2
A(P) (P −Q · P) − 1

ρ
ω(drag), (C3)

where
ω(drag) =

〈
T̄(drag)

i

〉
(C4)

and

H = Q ·
(
U +

12

γ0L2

E
ρ2

)
− S :

(
U +

12

γ0L2

E
ρ2

)
+

12

γ0L2
A(P) (PP − T · P) − 1

ρ
H(drag), (C5)

where
H(drag) =

〈
piT̄

(drag)
i

〉
. (C6)

Furthermore we note that

j =
σ0

γ0
(PP −Q) +

1

γ0ρ
j(drag) +O

(
L2
)

, (C7)

and

J =
σ0

γ0
(QP − T ) +

1

γ0ρ
J (drag) +O

(
L2
)

, (C8)

where

j(drag) = − 1

γ0

〈
pi

(
F(drag)

i − 1

ρ
f

)〉
(C9)

and

J (drag) = − 1

γ0

〈
pipi

(
F(drag)

i − 1

ρ
f

)〉
. (C10)

Putting all of this together, we arrive at an expression for the networks stress in terms of the current
distribution of filaments,

Σ = −ρ2 (χ : U + αK0I) − ρ2
(
A(Q)Q− A(P)T · P

)
− χ̄ : E + Σ̄+ ρΣ(drag). (C11)

where

Σ(drag) = −γ0
L2

12
H(drag) − γ1j(drag) (C12)

and at a similar equation for the motion of filament i
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vi − v = −σ0

γ0

(
pi − P

)

− γ1

γ0

⎛
⎜⎜⎝

(pi − P) ·
(
U +

12

γ0L2

E
ρ2

)

−(pipipi − T ) :

(
U +

12

γ0L2

E
ρ2

)
⎞
⎟⎟⎠

+
1

γ0

12γ1

L2γ0
A(P)

(
pipi −Q

)
· P

− ∇ρ

γ0ρ
·
[

AQ (pipi −Q
)

−A(P)
(

piP + Ppi − 2PP
)]

−
(

pipi −Q) : ∇E
ρ

)
− 1

ρ
v(drag) (C13)

where
1

ρ
v(drag) =

1

ργ0
F(drag)

i +O
(
1/ρ2

)
. (C14)

In the main text of this paper we chose to ignore drag-effects, which in general come from the interactions
between that cytoskeletal network and the solvent in which it is submerged, for simplicity and because their
relative importance diminishes quadratically as ρ increases. At lower densities however, they can become
important, and in more dilute suspensions they can even dominate the long range momentum transport.
This case has been treated in [24, 26] and others.

Appendix D. Crosslink moments and generalization to variable filament lengths

The crosslink moment which enter the hydrodynamic descriptions are defined from moments of crosslinker
mediated filament–filament forces. Specifically,

K0 =
⌊

K(si, sj)
⌉ij

Ω(xi)
, (D1)

K1 =
⌊

siK(si, sj)
⌉ij

Ω(xi)
, (D2)

γ0 =
⌊
γ(si, sj)

⌉ij

Ω(xi)
, (D3)

γ1 =
⌊

siγ(si, sj)
⌉ij

Ω(xi)
, (D4)

σ0 =
⌊
σ(si, sj)

⌉ij

Ω(xi)
, (D5)

σ10 =
⌊

siσ(si, sj)
⌉ij

Ω(xi)
, (D6)

and
σ01 =

⌊
sjσ(si, sj)

⌉ij

Ω(xi)
. (D7)

In the main text, for simplicity, we constrained ourselves to the case of filaments which all have the same
length L. It is however straightforward to generalize the definition of the operator �· · · �ij

Ω(x) to treat variable

length filament distributions. To describe variable length filaments, we redefine �· · · �ij
Ω(x) in equation (19)

as

�φ�ij
Ω(xi)

=

Li
2∫

− Li
2

dsi

Lj
2∫

−
Lj
2

dsj

∫
Ω(xi)

dx3 φ(si/Li, sj/Li)

= LiLj

1
2∫

− 1
2

d̂si

1
2∫

− 1
2

d̂sj

∫
Ω(xi)

dx3 φ(̂si, ŝj), (D8)

where Lîsi = si and Lîsj = sj. Under this redefinition the crosslink moments from equation (26) become

Xij
nm(x) = �X(̂si, ŝj )̂sn

i ŝm
j �

ij
Ω(x). (D9)

All calculations in the main text can be carried through with this redefinition.
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Appendix E. Angular momentum fluxes and antisymmetric stresses

The spin and orbital angular momenta obey the continuity equations

�̇i =
∑

j

Tij + T(drag)
i (E1)

and
xi × ġi =

∑
j

xi × Fij + xi × F(drag)
i , (E2)

where we used equation (5) and that ẋi is parallel to g. We and introduce the densities of spin and orbital
angular momentum which are

� =
∑

i

δ(x − xi)�i, (E3)

and
�(orb) =

∑
i

δ(x − xi)xi × gi, (E4)

respectively. They obey continuity equations

∂t�+∇ ·
∑

i

(δ(x − xi)vi�i) =
∑

i,j

δ(x − xi)Tij + τ , (E5)

where
τ =

∑
i

δ(x − xi)T(drag)
i (E6)

and
∂t�

(orb) +∇ ·
∑

i

δ(x − xi)vixi × gi =
∑

i,j

δ(x − xi)xi × Fij + x × f. (E7)

The first term on the right-hand side of equation (E7) describes the orbital angular momentum transfer
by crosslink interactions. It can be rewritten as the sum of an orbital angular momentum flux M(orb) and a
source term related to the antisymmetric part of the stress tensor Σ,

∑
i,j

δ(x − xi)xi × Fij

=
∑

i,j

δ (x − xi)
xi + xj

2
× Fij +

∑
i,j

δ (x − xi)
xi − xj

2
× Fij

= ∇ ·M(orb) + 2σa +O(d3
ij), (E8)

where the orbital angular momentum flux is

M(orb) = −
∑

i,j

δ (x − xi)
xi − xj

2

(
xi + xj

2
× Fij

)
(E9)

and

σa =
∑

i,j

δ (x − xi)
xi − xj

4
× Fij, (E10)

which is the pseudo-vector notation for the antisymmetric part of the stress Σ such that in index notation,

σa
α =

1

2
εαβγΣβγ , (E11)

where used the Levi-Civita symbol εαβγ and summation over repeated greek indices is implied.
Similarly, the first term on the right-hand side of equation (E5) describes the spin angular momentum

transfer by crosslink interactions. It can be rewritten as the sum of an orbital angular momentum flux M
and a source term related to the antisymmetric part of the stress tensor Σ,
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∑
i,j

δ(x − xi)Tij

=
∑

i,j

δ (x − xi)

(
Tij +

xi − xj

2
× Fij

)
−
∑

i,j

δ (x − xi)
xi − xj

2
× Fij

= ∇ ·M− 2σa +O(d3
ij), (E12)

where the spin angular momentum flux

M = −
∑

i,j

δ (x − xi)
xi − xj

2

(
Tij +

xi − xj

2
× Fij

)
. (E13)

After defining the total and spin angular momentum fluxes as

M(tot) = M +M(orb) = −
∑

i,j

δ (x − xi)
xi − xj

2

(
Tij + xi × Fij

)
, (E14)

we finally write down the statements of angular momentum conservation

∇ ·M(tot) + x × f + τ = 0, (E15)

spin angular momentum continuity
∇ ·M− 2σa + τ = 0, (E16)

and orbital angular momentum continuity

∇ ·M(orb) + 2σa + x × f = 0, (E17)

where we dropped inertial terms. We note that the antisymmetric stress Σa acts to transfer spin to orbital
angular momentum. Importantly, the total angular momentum is conserved as evident from the form of
equation (E15).

Appendix F. The Ericksen stress

In this appendix we derive the effects of steric interactions on the system. As stated in the main text, steric
interactions are best described in terms of a potential e(xi, pi), which depends on all particle positions and
orientations. The steric free energy of the system is E =

∫
V e d3x where V is the volume of the system. For

the treatment to follow we shall assume the steric interactions do not depend on the polar, but only on the
nematic order of the system. Then a generic variation of the systems free energy can be written as

δE =

∫
∂V

(
euγ +

∂e

∂(∂γQαβ)
δQαβ

)
dSγ −

∫
∂V

(
μδρ+ EαβδQαβ

)
(F1)

where we defined the chemical potential

μ = − ∂e

∂ρ
(F2)

and the distortion field

Eαβ = − ∂e

∂Qαβ
+ ∂γ

∂e

∂(∂γQαβ)
, (F3)

and introduced the infinitesimal deformation field u. Now, any physically well defined free energy density
needs to obey translation invariance. Thus δE = 0 for any pure translation, which is the transformation
where δρ = −uγ∂γρ, δQαβ = −uγ∂γQαβ , uγ is a constant. Thus

∂β

((
e + QμνEμν + μρ

)
δαβ −

∂e

∂(∂βQγμ)
∂αQγμ

)
= ρ∂αμ+ Qμν∂αEμν , (F4)

which is the Gibbs–Duhem relation used in the main text, where

Σ̄αβ =
(
e + QμνEμν + μρ

)
δαβ −

∂e

∂(∂βQγμ)
∂αQγμ. (F5)
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