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The cytoskeleton forms a variety of steady-state, subcellular struc-
tures that are maintained by continuous fluxes of molecules and
energy. Understanding such self-organizing structures is not only
crucial for cell biology but also poses a fundamental challenge for
physics, since these systems are active materials that behave drasti-
cally differently from matter at or near equilibrium. Active liquid
crystal theories have been developed to study the self-organization
of cytoskeletal filaments in in vitro systems of purified components.
However, it has been unclear how relevant these simplified ap-
proaches are for understanding biological structures, which can be
composed of hundreds of distinct proteins. Here we show that a
suitably constructed active liquid crystal theory produces remarkably
accurate predictions of the behaviors of metaphase spindles—the
cytoskeletal structure, composed largely of microtubules and associ-
ated proteins, that segregates chromosomes during cell division.
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Continuum theories form the basis of our understanding of
much of the material world, but it has been unclear if such

theories can be used to study self-organizing biological struc-
tures, due to the complexity and fundamentally nonequilibrium
nature of these systems. One example of these structures that has
been extensively studied for over a century is the metaphase
spindle, an ensemble of microtubules, molecular motors, and
other associated proteins that segregates chromosomes during
cell division. Hundreds of proteins have been found to contribute
to spindle assembly (1), but while various principles have been
proposed to explain how these constituents self-organize to form
the spindle—including gradients of signaling molecules (2), a
mechanical matrix (3), and the regulated “feeding” of microtubule
depolymerizers by microtubule sliding (4)—the physical basis of
spindle assembly is currently unknown (5). Complementary to this
in vivo work, in vitro experiments have shown that mixtures con-
sisting solely of purified cytoskeletal filaments and motors can
spontaneously self-organize into structures (6, 7) and display com-
plex dynamics (8–10). Sophisticated theories of these simplified
systems have been developed to explain how the collective effects
of the local interactions of microtubules, mediated by motors, give
rise to these large-scale behaviors (11, 12). It is unclear if the
principles learned from these reconstituted systems apply to the self-
organization of the spindle and other cytoskeletal structures in vivo.
Here we apply a holistic approach to study the physical prin-

ciples that give rise to spindle self-organization by quantitatively
studying the collective behaviors of microtubules in spindles. Our
approach uses the intimate connection between spatiotemporal
correlation functions of the spontaneous fluctuations of micro-
tubule density, orientation and stress, and the underlying physi-
cal processes that drive them. Comparing measurements of the
correlation function with predictions from theory provides both
a rigorous test of the validity of that theory and a sensitive means
of determining its parameters. Similar approaches are commonly
used in condensed matter physics to quantitatively test expla-
nations of phenomena (13) and provide the basis of several widely
used experimental techniques, such as Fluorescence Correlation
Spectroscopy and Dynamic Light Scattering. We therefore
sought to experimentally measure correlation functions associ-
ated with density, orientation, and stress in metaphase arrested

spindles assembled in Xenopus laevis egg extracts. All of our
measurements on correlation functions and spindle morphology
can be quantitatively accounted for using an active liquid crystal
theory that we construct. Our combined theoretical and experi-
mental approach provides a general framework for understanding
the structure and dynamics of the spindle and its responses to
physical and molecular perturbations.
We used an LC-Polscope (14), a form of polarized light mi-

croscopy, to quantitatively measure the retardance (the bi-
refringence integrated over the optical volume) and the optical
slow axis, also called the nematic director (a measure of micro-
tubule orientation), at every pixel in time-lapse movies of spin-
dles (Fig. 1A and Movies S1 and S2). LC-Polscope movies reveal
that at steady state, microtubules are highly oriented along the
spindle long axes, and display large orientational fluctuations
(see Movie S1). We used these movies to compute the spatio-
temporal correlations of director fluctuations (see Methods
Summary and Fig. 1 A and B) and found that the equal time
director autocorrelation function decays with wavelength as 1=q2

and decays with frequency as 1=ω2 (for q→ 0). Fluctuations of
this form indicate that nearby microtubules tend to orient in the
same direction while microtubules that are farther apart are less
well aligned, and are quantitatively consistent with microtubules
being oriented by their local interactions from cross-linkers,
motors, and steric effects (see SI Text) (12, 15). This form of the
director autocorrelation function is inconsistent with micro-
tubules being embedded in an elastic matrix (which would cause
a plateau in the orientational correlation function at long
wavelength due to elastic deformation of the matrix), or micro-
tubules being aligned independently of each other by an external
field or global signal (which would result in a flat equal time
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correlation function because local fluctuations would not col-
lectively accumulate).
We measured microtubule density in spindles by obtaining 3D

time-lapse spinning disk confocal microscopy movies of spindles
labeled with high concentration of fluorescent tubulin (Fig. 1C
and Movie S3). The equal time autocorrelation function of
density fluctuations along the direction perpendicular to the
spindle axis (⊥) plateaus for small q⊥, and decays as 1=q4⊥ for
large q⊥ (Fig. 1D). The relative sliding of microtubules, by the
activity of cross-linking molecular motors (16), will produce a
coupling between the orientation and density of microtubules, so
fluctuations in orientation will lead to fluctuations in density. If
the dominant processes that controlled microtubule arrangement

in the spindle were this relative sliding and the tendency of
microtubules to locally orient each other, revealed from our LC-
Polscope measurements, then the density fluctuations would di-
verge as 1/q2 (see SI Text and ref. 17), in marked contrast with
their observed behavior (Fig. 1D). Microtubules in the spindle are
also continuously being nucleated, growing, and shrinking (2).
The combination of this rapid turnover with the mutual orien-
tation and sliding of microtubules predicts density correlation
functions of the form that is experimentally observed (see SI
Text). The plateau in the density correlation function at small q
arises because microtubules turn over too rapidly to be trans-
ported significant distances by sliding, so large-scale motor driven
fluctuations are suppressed. The 1/q4 decay at short wavelengths

10–5

100

10–3
10–2
10–1 q–2

101100 10–4

100

10–3
10–2
10–1

101
102

10–110–2

–2

(rad/s)

103

100
101
102

104
105

10010–1

q–2

q–4

q (rad/ m)

10–4

10–2

100

10–6

10–110–2 100

(rad/s)

–2

S cc
(q

z  
0)

 (a
.u

.)

C
cc

(q
   

0)
 (a

.u
.)

q  (rad/ m)

S nn
(q

z  
0)

 (r
ad

2 )

C
nn

(q
   

0)
 (r

ad
2 )Director orientation Retardance

0

Director fluctuations

3D Confocal imaging

n
n

z

5 m

Density fluctuations

10–4

10–1

A B

C D

3D stack x

E Two-point displacements
101

100

10–1

10–2

10

1.8

C
(μ

m
2 )

(s) R (

10–5

100

10–1

10–2

10–3

10–4

101100

10 m

5 m

z

F G

C
(μ

m
2 )

R–1

z

Fig. 1. Measurement of director orientation, density, and two-point correlation functions. (A) LC-Polscope images provide a quantitative measurement of
the director orientation (Left) and retardance (Right). The red square illustrates a typical region used to calculate the spatiotemporal correlations of the
orientation fluctuations (dashed white arrow) with respect to the mean orientation at that location (solid white arrow). See also Movies S1 and S2. (B) (Left)
Equal time director autocorrelation functions from 14 spindles as a function of the wave number, q⊥, for qz = 0:39 rad/μm, the lowest wave number measured
along this direction (<< q⊥). Dashed line represents a 1=q2

⊥ decay. (Right) Long-wavelength limit of the spatiotemporal correlation as a function of the
frequency. Dashed line represents a 1/ω2 scaling. (C) We used 3D confocal fluorescence time-lapse movies to measure spatiotemporal correlations of the
microtubule density fluctuations. The red cube illustrates a typical 3D region used to measure these correlations. See also Movie S3. (D) (Left) The amplitude of
the equal time density autocorrelation function (n = 14 spindles) plateaus for long wavelengths and decays as1=q4

⊥ for short wavelengths (dashed black lines)
and in marked contrast to the 1=q2

⊥ scaling predicted without turnover (dashed red line). (Right) Long-wavelength limit of the spatiotemporal correlation.
Dashed line represents a 1/ω2 scaling. (E) (Left) A frame of single molecule time-lapse movie of fluorescently labeled microtubules. The dashed white contour
represents the boundary of the spindle. Red circles highlight two single fluorescence molecules. Solid orange represents particle displacements (e(1), e(2)).
Orange dashed line represents distance (R) between particles. (Right) Detail of two speckles and their spatial displacements over time (blue line). See also
Movie S4. (F) Cross-correlations of pairs of tracer particles (C««; see Methods Summary) normalized by their initial distance as a function of time lag (τ) show
superdiffusive behavior. Dashed line corresponds to an exponent of 1.8; each trajectory (13 in the figure) corresponds to the average two point cross-
correlations of a spindle. (G) Spatial dependence of the two-point cross-correlations C«« for the smallest measured time lag, τ = 2.1 s, decays as 1/R, as expected
in a continuum theory.
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results from the orientation and sliding interactions cooperating
with stochastic, diffusive-like motions of microtubules (an in-
termediate 1/q2 decay would be observed if either diffusion or
orientation interactions dominate for intermediate wavelengths,
but an appreciable regime of this nature is not seen, indicating
that these two process have similar magnitudes). Thus, the scaling
of the orientational and density fluctuations can be explained by
the local, mutual interactions of microtubules sliding and ori-
enting each other, while polymerizing and depolymerizing.
To study the production and propagation of forces, we mea-

sured stress fluctuations in spindles using a combination of pas-
sive two-point particle displacements and active microrheology
measurements (18–20). This method relies on the generalized
Stokes−Einstein equation to relate the correlated motions be-
tween pairs of particles to the mechanics of the intervening media
and the stresses that drive their motion, and is valid for incrom-
pressible, viscoelastic continuous media in the presence of both
active and thermal stress fluctuations (19, 20) (see SI Text). We
obtained two-point particle displacements by tracking single
molecules of fluorescently labeled tubulin incorporated into
microtubules in the spindle, and computed the two-point corre-
lation between these single molecules along the direction per-
pendicular to the spindle axis (see Fig. 1 E and F). The two-point
displacements decay as the inverse of the particle separation, R
(Fig. 1G), consistent with stresses being propagated by the local
interactions between microtubules [and as would be expected in

any media that can be approximated as a continuum (19)]. These
two-point displacements exhibit super-diffusive motion with an
exponent α ∼1.8 (Fig. 1F), which, when combined with the active
microrheology measurements of the frequency-dependent shear
modulus of the spindle by Shimamoto et al. (21), reveals that
stress fluctuations in the spindle increase linearly with time lag
(see below). This spectrum of stress fluctuations is expected from
motors exerting forces between microtubules they cross-link,
giving rise to dipolar stresses (see SI Text and ref. 17).
Our investigation of the scaling of spatiotemporal correlation

functions of microtubule orientation, microtubule density, and
stresses in the spindle reveals the role of local interactions between
microtubules in orienting, sliding, and generating and propagating
stresses between microtubules, as well as the importance of mi-
crotubule turnover. To more thoroughly study these phenomena,
we constructed a minimal model of these processes based on the
shape of the correlation functions of density, orientation, and stress
that is consistent with relevant conservation laws and the known
symmetries of microtubules in the spindle, and explored pre-
dictions beyond scaling (see SI Text). The prediction for the equal
time director autocorrelation function in the perpendicular di-
rection to the spindle is S2⊥=2Kq

2
⊥, and the frequency dependence

of the director autocorrelation function (for q→ 0) is S2⊥=ω
2, where

S⊥ is the magnitude of orientation noise (assumed Gaussian), and
K is the strength of the nematic elasticity, a measure of the ten-
dency of local interactions to orient microtubules. Thus, these two
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Fig. 2. Comparison between experimental data and expected periodogram of the theoretical predictions (see Methods Summary and SI Text) for density,
director orientation, and stress correlation functions. Solid red lines show the fits used to determine the six parameters of the theory, and the dashed red lines
are the resulting predictions. (A) Average equal time correlation functions for the director−director fluctuations obtained from the LC-Polscope, and cor-
responding fit to the theoretical prediction Snn = S2⊥=2Kq

2
⊥ (solid red line). (B) Average frequency dependence of the spatiotemporal correlation functions for

the director−director fluctuations obtained from the LC-Polscope, and corresponding fit to the theoretical prediction, Cnn = S2⊥=ðω2 +K2q4
0Þ (solid red line),

where q0 = 0:39 rad/μm is the lowest wave number measured. (C) Average equal time correlation functions for density−density fluctuations obtained from
fluorescence (Fig. 1D, dark green) and LC-Polscope retardance measurements (light green). The fluorescence density correlations were rescaled to the
retardance correlations, which have units of square nanometers. These correlations were fit to the theoretical prediction for the equal time density corre-
lations, Scc = fðq2
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malized c0v0 by the average retardance and rescaled it to the number of microtubule per unit volume using EM images of Xenopus spindles (22),
7.14 microtubules/μm3 [50 microtubules/μm2 in a cross-section, divided by the average microtubule length in a spindle, 7 μm (23)]. (D) Average frequency
dependence of the spatiotemporal correlation functions for density−density fluctuations obtained from the retardance measurements. These correlations
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mental measurements. (G) Spatial dependence of the two-point cross-correlations for the smallest measured time lag (Fig. 1G) and its theoretical prediction
C«« =A=R, where A is a constant (see SI Text). (H) Temporal dependence of the stress fluctuations and its theoretical fit, ΔðτÞ= 2W2c20S

2
⊥τ. Black line corre-

sponds to the prediction from the fluctuation dissipation theorem. Error bars are SDs.
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parameters can be determined by fitting the director correlation
functions (Fig. 2A and B) leading to S⊥= 0.021± 0.002 rad s3/2·μm3/2,
K = 0.022 ± 0.009 μm2·s–1. The measured equal time density
autocorrelation function is well fit by the predicted form, Scc =
fq2⊥v20c20S2⊥=½2ðK2q4⊥+ ðΘ+Dq2⊥Þ2Þ�g·½1=ðKq2⊥Þ+ð1=Θ+Dq2⊥Þ� (Fig.
2C; see SI Text), which has a plateau for small q of Scc ∼
v20c

2
0S

2
⊥=2KΘ

2, where c0 is the average density of microtubules,
v0 is the velocity of microtubule transport, and Θ is the turnover
rate, and transitions to the 1=q4⊥ regime at a wavelength determined
by the square root of the ratio of K and Θ, Scc ≈ ½ðv20c20S2⊥Þ=ð2q4⊥Þ�fðD+KÞ=½KDðK2 +D2Þ�g. Thus, this fit provides a means to mea-
sure the stationary flux, c0v0 = 3.3 ± 0.4 microtubules μm–2·s–1, the
turnover rate, Θ = 0.06 ± 0.02 s–1, and the coefficient characterizing
diffusive-like motion of microtubules in the spindle, D = 0.022 ±
0.006 μm2·s–1 (Fig. 2C). This value of Θ corresponds to a microtu-
bule turnover time of 1=Θ ≈ 17 s, which, within error, is the same as
the average lifetime of microtubules in the spindle measured from
single molecule studies (24). The prediction for the spectrum of
stress fluctuations, ΔðωÞ= 4W 2c20S

2
⊥=ω

2, provides a good fit to our
measurements (see Fig. 2H and SI Text), giving Wc0 = 69 ± 2
pN/μm2, where W is the active stress per unit microtubule density.
This magnitude of stress fluctuations is consistent with ∼1 molecular
motor per micrometer of microtubule (assuming an average force
per motor of ∼10 pN). The measured stress fluctuations are orders
of magnitude greater, and have a different temporal dependence,
than predicted from the equilibrium fluctuation dissipation relation
(Fig. 2H, black line), based on thermal fluctuations and the mea-
sured rheology of the spindle (21). The strong violation of the
equilibrium fluctuation dissipation relationship demonstrates the
intrinsic out-of-equilibrium nature of the spindle. The linear tem-
poral increase of the stress fluctuations corresponds to a 1=ω2

frequency dependence, which has previously been reported for
reconstituted cytoskeletal systems (25) and cells (19, 26).
As described above, if microtubule movements are driven by

their mutual, local interactions, then the orientation and density of
microtubules will be coupled. This coupling should be fundamental
for driving the dynamics of microtubules in the spindle because
large orientational fluctuations, which result from the collec-
tive accumulation between microtubules, should dominate other
sources of density fluctuations. To explore the validity of these
ideas and to directly probe this coupling, we sought to measure the
cross-correlation between microtubule density and orientation in
the spindle. To experimentally determine density−director cross-
correlations, it is necessary to simultaneously measure both these
fields, which is possible using the pair of images simultaneously
provided by the LC-Polscope: The orientation of the optical slow
axis is the orientation of the director, while the retardance is
proportional to microtubule density, as expected from of the
high degree of ordering of microtubules in spindles and as is
directly demonstrated by the quantitative agreement between the
retardance and fluorescence autocorrelation functions (Fig. 2C).
The measured equal time and frequency-dependent (for q→ 0)
density−director cross-correlations are in quantitative agreement
with predictions using the previously measured parameters (Fig.
2 E and F), thus strongly supporting the validity of the proposed
mechanisms. Alternatively, simultaneously fitting all eight cor-
relation functions (wavelength and frequency dependence of
density−density, director−director, density−director, and stress)
does not significantly change the results. Explaining these eight
correlation functions with a theory with only six parameters is
a strong validation of the theory because even if all of the corre-
lation functions were simple power laws (and they actually display
more complex structure), it would be necessary to use 16 free
parameters to empirically characterize the measured curves. In
conclusion, all of our quantitative measurements of microtubule
orientation, density, and the generation and propagation of stress
in the spindle are consistent with spindle self-organization arising

from the local interactions of microtubules, mediated by cross-
linkers and motors, and microtubule polymerization dynamics.
Having shown that the local interactions of microtubules and

microtubule turnover are sufficient to account for the internal
dynamics of the spindle, we next sought to investigate if these
same processes could explain the morphology of the spindle. In
this view, the spindle is similar to a droplet of liquid crystal, but
it is composed of a nonequilibrium material with properties
determined from our measurements of correlation functions.
Building off of theories of the shape of liquid droplets (27, 28),
appropriately modified to account for the active nature of the
spindle, we approximated the spindle as an ellipse with constant
density and fixed volume, and calculated the distribution of mi-
crotubule orientation and polarity inside the spindle and the
aspect ratio of the spindle. The orientation of microtubules is
governed by nematic elasticity—arising from the tendency of
microtubules to mutually align each other—and is thus solely
determined by the solution of Laplace’s equation with the ap-
propriate geometry and boundary conditions, which we take to
be tangential anchoring with two half defects at the poles (see SI
Text). The calculated orientation of microtubules throughout the
spindle quantitatively agrees with our LC-Polscope measure-
ments (Fig. 3 A and B), which is a strong confirmation of the
theory, as this prediction is not based on a fit and in fact involves
no parameters at all. We reproduced the observed spatial varia-
tion of polarity (23) by imposing vanishing polarity at the center
of the spindle and fitting a single parameter given by the ratio of
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(A) Prediction of director orientation in the spindle (Left) and corresponding
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sections in the spindle. Red dot in right plot corresponds to the same orienta-
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polarity-dependent active transport and the preferred value of
polarity due to motor activity (Fig. 3C; see SI Text). Finally, we
calculated the aspect ratio of the spindle by balancing the active
stress from motor activity with surface tension, which is a conse-
quence of microtubules cross-linking each other. A surface
tension of 143 ± 24 pN/μm reproduced an aspect ratio of 1.7 ±
0.5 and a shape that closely agrees with observation (see Fig.
3D and SI Text). This quantitative agreement between calcu-
lations and measurements demonstrate that local interactions
between microtubules are sufficient to account for the mor-
phology of the spindle.
The active liquid crystal theory of the spindle that our work

has validated should be a powerful framework for understanding
the spindle. The theory provides a basis for investigating the wide
range of spindle phenomenology that has been observed, such as
the fusion of two spindles (29) or the response of the spindle to
physical perturbations (30). Molecular perturbations should act
to change the parameters of the theory, such as K, the orienta-
tional elasticity, or W, the strength of the active stress, which
could result in changes in spindle structure and dynamics. While
additional work will be required to predict which parameters will
be affected by specific molecular perturbations, this could be
investigated empirically by using fluctuations to measure how
molecular perturbations influence the theory’s parameters. More
broadly, the success of such a simple description demonstrates
that, despite the extreme molecular complexity of spindles (31),
their structure and dynamics at cellular scales are quantitatively
accounted for using just a few effective parameters and argues
that active liquid crystal theories are a promising route for de-
veloping predictive theories of cell biology (32).

Methods Summary
Spindle Assembly. We prepared CSF-arrested egg extracts from Xenopus
laevis female oocytes as described previously (33). To measure microtubule
density fluctuations, we added 0.5 μM Atto565-labeled tubulin to spindles

and acquired 3D fluorescence movies. For two-point particle tracking, we
added ∼100 pM Alexa647-labeled tubulin. We used a spinning disk confocal
microscope (Nikon Ti2000), an EMCCD camera (Hamamatsu), and a 60× ob-
jective for acquisition of 3D fluorescence and two-point microrheology
images. We used a LC-Polscope and a 100× objective for acquisition of ori-
entation and retardance images.

Image Analysis. Before computing the spatiotemporal correlations, we reg-
istered spindles from a time lapse using a custom Matlab (The MathWorks)
routine (34). For the two-point particle tracking measurements, we used
custom-written Matlab code and routines from people.umass.edu/kilfoil/
downloads.html (35).

Computation of Correlation Functions. We computed spatiotemporal cor-
relations (3 space + 1 time for fluorescence and 2 space + 1 time for
retardance movies) by first subtracting the temporal mean at each pixel
of a time-lapse movie, and then using the periodogram formula Cð~q,wÞ=
F
�
δið~x,tÞ�conj�F�δið~x,tÞ�=V , where δi is the fluctuation as a function of space

and time, V is the product of time and space dimensions, and F is the discrete
fast Fourier transform. We corrected for distortions in the empirically mea-
sured correlation functions due to the point spread function and finite ex-
posure time by dividing the data by the Fourier transform and power
spectrum of these response functions. When comparing theoretically predicted
and measured correlation functions, we compensated for artifacts caused
by calculating power spectra of finite data by analytically computing the
expected periodogram of the theoretical prediction. Alternatively, applying
different windowing functions to the data did not significantly change any of
our results (36). We defined the cross-correlation of two pairs of tracer par-
ticles as C««ðR,tÞ= 1

2< «ð1ÞðtÞ«ð2ÞðtÞ> , where e(1) and e(2) are the displacements
with respect to their initial position as a function of time of two tracer particles
initially separated a distance R apart (see Fig. 1E). See Stress Correlation
Functions and Two-Point Microrheology.
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Active Hydrodynamic Description of the Spindle
Hydrodynamic Equations. Spindles are primarily composed of
microtubules and associated proteins that regulate the dynamics
and interactions of microtubules. Our study focuses on spindles
assembled in Xenopus laevis egg extracts, which recapitulate
metaphase arrested meiosis II spindles. These spindles are on
average ∼45 microns long and ∼30 microns wide. Microtubules
in these spindles have an average length of ∼7 microns (1) and are
at a density of ∼50–100 microtubules/μm2 (2, 3), implying that there
are ∼100,000 microtubules per spindle. Microtubules are polar
polymers whose minus ends are relatively static and whose plus ends
polymerize at a speed of ∼10–20 μm/min (4). There is no appre-
ciable rate of rescues in these spindles (1), and the half-life of these
microtubules is ∼16 s (5), much shorter than the typical lifetime of
a spindle—which can exist for several hours. Microtubules in the
spindle interact with each other via motors and cross-linkers, and
continuously slide toward the poles at a rate of ∼2.5 μm/min (1, 6).
Microtubules in the spindle are deep within the nematic phase, as

their volume fraction, ∼0.03, is well above the volume fraction at
which the isotropic phase is expected to lose stability, ∼0.01 (7).
While microtubules are uniformly highly aligned throughout the
spindle (2), their net polarity varies spatially, ranging from antipar-
allel microtubules in the middle to most microtubules facing with
their plus ends toward the center of the spindle near the poles (1).
These observations suggest that it is necessary to use a polar field and
a nematic field, both oriented along the same axis, to describe the
ordering of microtubules in spindles. We choose a minimal model
that is consistent with all of our data. In this model, the orientation of
microtubules is determined by nematic interactions, and the polar
field convects the microtubule concentration and polarity magnitude.
The magnitude of the nematic field is taken to be constant
throughout the spindle, while the magnitude of the polarity field
depends on motor activity and self-advection (see below). This the-
ory is consistent with a picture in which microtubules are oriented
independent of the magnitude of their polarity, and microtubules are
transported, polymerize, and depolymerize along the direction de-
termined by their orientation. It is possible to construct more general
theories involving both polar and nematic fields, but we consider the
simplest theory that is consistent with all of our data. Our quanti-
tative measurements are not compatible with pure nematic or pure
polar theories (which, as discussed above, are also incompatible with
the known symmetries of microtubules in the spindle).
We describe the hydrodynamic limit of the spindle with ρðx; tÞ,

the total density of microtubules (ρm) plus solvent (ρs), its total
momentum gðx; tÞ, nematic director orientation nðx; tÞ, and po-
larity pðx; tÞ= pðx; tÞnðx; tÞ. In what follows, we briefly describe
the hydrodynamic equations for these variables.
We write the equation for the nematic and polar order param-

eter using the equations from liquid crystal physics with the ap-
propriate symmetry, including terms not allowed in equilibrium,
which arise from activity (8, 9),

∂n
∂t

=−v ·∇n+Ωn+ λAn+K∇2n; [S1]

∂p
∂t

=−ðv+ λ1pnÞ ·∇p+
�
α− βp2

�
p+ ξn ·∇c+Kp∇2p; [S2]

where we have explicitly taken p= pn. The nematic equation in-
cludes advection by the hydrodynamic velocity v= g=ρ, with g the

total momentum density, flow alignment of microtubules (8),
2Ω≡∇v− ð∇vÞT , and 2A≡∇v+ ð∇vÞT , and liquid crystal elastic-
ity in the one-Frank-constant approximation. The polar equation
includes self-advection from polarity, two terms representing mo-
tor activity, which tend to fix a magnitude of polarity and modify
polarity through gradients of concentration, and a diffusive term.
The equation for force balance reads

∂tgj = ∂j
�
σrij + σdij + σaij

�
; [S3]

where the total stress is the sum of reactive, dissipative, and active
stresses. Neglecting stress that explicitly depends on the magni-
tude of polarity,

σr =−
λ

2

�
nh+ ðhnÞT

�
+
1
2

�
nh− ðhnÞT

�
−ΠI; [S4]

σd =
Z t

−∞

dt′~μ
�
t− t′

��
∇v+ ð∇vÞT

�
; [S5]

σa =Wc
�
nn−

I
d

�
: [S6]

The reactive term depends on an isotropic pressure and the mo-
lecular field h=K∇2n in the one-Frank-constant approximation
and ignoring terms that depend on the magnitude of polarity; ~μ is
the relaxation modulus, which we can estimate from ref. 10. For
long time scales, the spindle is viscous, with a frequency-dependent
viscosity (see Stress Correlation Functions and Two-Point Micro-
rheology). The active stress is proportional to the nematic tensor
and can be obtained by averaging the forces that the microtu-
bules exert on the solvent (9, 11).
Microtubules polymerize by addition of tubulin dimers from

the solvent. We assume that the interchange between solvent and
microtubules does not involve volume changes and that the total
density is conserved (more generally, these processes may involve
changes in volume that in turn can create active stress, as in the
case of cells growing in tissues) (12),

∂ρ
∂t

+∇ · g= 0: [S7]

In terms of the microtubule concentration, c≡ ρm=ρ,

∂c
∂t
+ v ·∇c+∇ · j=Γðc; pÞ; [S8]

where ΓðcÞ is a source of microtubules, which includes microtubule
nucleation and turnover, v= g=ρ, and the flux j= ðvm − vsÞρsρm=ρ2,
where vm and vs are the microtubule and solvent velocities respec-
tively; j can be obtained in the low-frequency limit from the differ-
ence between the microtubule and solvent current equations (11),

ji =−
ρmρs
2ρ2κ

∂j
�
σmij − σsij

�
+

ρmρs
ρ2

vppi −
ρmρs
2ρ2κ

W∂jc
�
ninj − δij

�
d
�
;

[S9]

where pvp is the average velocity of the microtubules arising from
forces they exerted on the solvent. The first term is the passive
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current that would exist in the absence of activity, and must be of the
form −D∇c (assuming that there are not forces acting selectively on
solvent or particles). Substituting the current j into the equation for
the microtubule concentration (Eq. S8) and keeping the lowest
orders in microtubule orientation and concentration results in

∂c
∂t
+ v ·∇c+∇ · ½cpv0 −D∇c�=Γ0 −Θc; [S10]

where v0 is an effective velocity incorporating both movement
from forces exerted on the solvent ðvpÞ and microtubule growth
dynamics (possibly through microtubule-mediated microtubule nu-
cleation, treadmilling, or plus-end dynamics). Θ is the effective
turnover rate, and Γ0 is a source term that generates microtubules.
Eqs. S1−S3 and S10 define the hydrodynamic limit of the spindle.

Spatiotemporal correlation functions.To test whether such a continuum
description is appropriate for spindles, we obtain the equations
for small fluctuations in the concentration, orientation, and stress,
and derive the corresponding correlations to compare theoretical
predictions with our measurements (see Fig. 2). To this end, we
consider density fluctuations around a constant steady state
(consistent with fluorescent images), c= c0 + δc. We consider
a polar state for the spindle that changes very slowly along the
spindle long axis (z), and therefore can be approximated by a
constant for the region in which correlations are calculated.
Polarity fluctuations are dominated by fluctuations in orientation,
as fluctuations in magnitude relax much faster, so δp∼ p0δn⊥.
Finally, we obtain the stress fluctuations as a function of fluc-
tuations in density and orientation.
We derive the equation for orientation fluctuations δn⊥ from

Eq. S1,

∂δn⊥

∂t
− n̂⊥ðδΩ+ λδAÞnz −K∇2δn⊥ = n̂⊥ ·S; [S11]

where S is a random source of orientation with
	
Sðw; qÞSðw′; q′Þ
=

S2δðw+w′Þδðq+ q′Þ. The term n̂⊥ðδΩ+ λδAÞnz depends on hy-
drodynamic velocity fluctuations δv, which we obtain from the
force balance Eq. S3. Transforming in Fourier space,

�R
d~x exp�

ið~q~x−wtÞ�
�
, and using the incompressibility condition, we find,

δv=−i
4

3ηq2
W

�
qz
q2⊥
q2

− q⊥
q2z
q2

�
δc [S12]

−i
β

q2

�
qz

�
I− 2

q⊥q⊥
q2

�
δn⊥ + q⊥ · δn⊥

�
I− 2

qzqz
q2

�
nz

�
; [S13]

where η= μp=iw is a frequency-dependent viscosity (see Stress Cor-
relation Functions and Two-Point Microrheology), and β≡ 1=η
½Wc0 + q2ðλK=2Þ�. Since orientation measurements using the
LC-Polscope are 2D (and integrated along the direction perpen-
dicular to the plane, i.e., qx ≈ 0), we take q⊥ = qy parallel to δn⊥,
so that δn⊥ ·q⊥ = δnyqy. Experimentally, we measure the spatio-
temporal correlation functions as a function of the wave num-
ber in the y direction (see Fig. 2) in the limit of qz ≈ 0 � qy.
Within this limit, the term n̂⊥ðδΩ+ λδAÞnz in the equation for
the orientation fluctuations leads, after some algebra, to
ð1+ λÞβδny to leading order in qz=qy, and Eq. S11 for the orien-
tation fluctuations in Fourier space results in

�
−iw+ q2⊥K

�
δny − ð1+ λÞβδny = n̂y ·S: [S14]

We derive the equation for density fluctuations from Eq.
S10. Taking the same limit as in the orientational fluctuations,
qz ≈ 0≈ qx � q⊥ and δn⊥ ·q⊥ = δnyqy, the incompressibility condi-
tion qδv≡ 0, neglecting gradients along the longitudinal direction

in the magnitude of polarity ðv0δc∂zp0 � c0v0p0∂yδnyÞ, and ne-
glecting a potential noise source in the density fluctuations

�
−iw+Θ+Dq2y

�
δc+ ic0v0′ qyδny = 0; [S15]

where v0′ = p0v0. We assume Θ> 0 for stability. (Including a
source of density fluctuations leads to an additive term in the
correlation functions with a shape inconsistent with our measure-
ments, which in turn can be explained only in terms of a source
of orientational noise.) Combining Eqs. S14 and S15, we find for
the density fluctuations,

�
−iw− ζ+ q2yK

��
iw−Θ−Dq2y

�
δc= ic0v0′ qySy; [S16]

where ζ≡ ð1+ λÞβ. The dispersion relation reads w=−iw± ðqÞ,
where w+ðqÞ=Θ+Dq2y , and w−ðqÞ=−ζ+ q2yK . The stationary so-
lution is stable only if w± is positive. The parameter ζ leads
to instabilities (9) unless microtubule elasticity dominates at
the larger length scales of the spindle, jWc0=ηj<Kq2y0, with
qy0 ≈ 0:39  rad=μm. With the measured parameters, this condition
is fulfilled provided the spindle width is smaller than ∼ 150  μm
(the typical width of a spindle is 20 μm). For the following
analysis, we approximate −ζ+ q2yK ≈ q2yK (the estimated param-
eters obtained from what follows confirm that ζ is an order of
magnitude smaller than Kq2y ).

Orientation correlation functions. From Eq. S14, the spatiotem-
poral correlation function for the orientation fluctuations is

	
δnyðw; qÞδnyð−w;− qÞ
= S2y

w2 +K2q4y
: [S17]

We compute the equal time orientation autocorrelation by inte-
grating over frequencyx,

Snn ≡
1
2π

Z∞

−∞

dw
	
δnyðw; qÞδnyð−w;− qÞ
= S2y

2Kq2y
: [S18]

Concentration correlation functions.The spatiotemporal correlation
functions for the density fluctuations can be similarly obtained,

hδcðw; qÞδcð−w;− qÞi= q2y v
02
0 c

2
0S

2
y

�
w2 +K2q4y

��
w2 +

�
Θ+Dq2y

�2
�; [S19]

with corresponding static structure factor

Scc =
q2y v

02
0 c20S

2
y

2
�
K2q4y +

�
Θ+Dq2y

�2
�

 
1

Kq2y
+

1
Θ+Dq2y

!

: [S20]

There are three time scales involved in relaxation of concen-
tration fluctuations: the characteristic turnover time 1=Θ, con-
centration diffusion 1=ðDq2y Þ, and orientation diffusion 1=ðKq2y Þ.
For large wavelength fluctuations ðqy → 0Þ, relaxation by density
and orientation diffusion becomes arbitrarily large, and any
perturbation relaxes by microtubule turnover in the spindle,
Θ � Kq2y ;Dq2y ,

Scc ∼
c20v

02
0 S2y

2KΘ2 : [S21]

In the opposite limit, for small wavelengths, turnover is slower
than relaxation by diffusion, Kq2y ;Dq2y � Θ, and
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Scc =
c20v

02
0 S2y

2q4y

ðD+KÞ
KDðK2 +D2Þ: [S22]

Finally, there is a possible intermediate regime in which turn-
over relaxes faster than concentration diffusion, but slower than
orientation diffusion. In this regime, concentration fluctuations
are driven by orientation fluctuations and the static structure
factor decays as 1=q2y , Kq

2
y � Θ � Dq2y ,

Scc =
c20v

02
0 S2y

2K2Θq2y
: [S23]

It is important to note that this last regime is possible only if
K � D. Experimentally, we found that this regime is not present,
indication that D≈K .
Density−orientation correlation functions. The spatiotemporal

cross-correlation between density and orientation fluctations is

D
δc
�
w; qy

�
δn⊥
�
−w;− qy

�E
=

−iv0′ c0qy
�
−iw+Θ+Dqy

�
S2y

�
w2 +K2q4y

��
w2 +

�
Θ+Dq2y

�2
�;

[S24]

Leading to an equal time density−director cross-correlation
function of

Scn =
−iv0′ c0S2y

2Kqy
�
Θ+ ðK +DÞq2y

�: [S25]

When relaxation by turnover dominates, Θ � Dq2y ;Kq
2
y , and

Scn ∼
−iv0′ c0S2y
2KΘqy

: [S26]

In the opposite limit, diffusion relaxation is faster than turnover,
ðD+KÞq2y � Θ, and

Scn ∼
−iv0′ c0S2y

2KðK +DÞΘq3y
: [S27]

Stress correlation functions and two-point microrheology. Two-point
microrheology of active systems is related to the fluctuations of
stress and the shear modulus of the continuum material, in this
case the spindle, by (11)

C««ðR;wÞ= ΔðwÞ
6πR



μðwÞ

2
; [S28]

where C««ðR;wÞ is the cross-correlation of pairs of tracer par-
ticles a distance R apart, ΔðwÞ is the active stress fluctuation
spectrum in the long-wavelength limit, and μðwÞ is the shear
modulus. Despite the similarity in appearance, this relation is not
based on the equilibrium fluctuation dissipation theorem, which
is not applicable for active systems such as the spindle. Rather,
Eq. S28 results from linear response more generally and is valid
for incompressible, viscoelastic continuous media in the presence
of both active and thermal stress fluctuations (13, 11). The mea-
sured R−1 decay of C«« (Fig. 1G) shows consistency with Eq. S28
and further argues that the spindle can be well described as
a viscoelastic continuous media. Experimentally, we determined
the cross-correlation of pairs of fluorescent molecules in the
spindle by computing the correlation of each tracer displacement
separated a distance R with respect to the initial position,

C««ðR; tÞ= 1=2
	
«ð1ÞðtÞ«ð2ÞðtÞ
 along the perpendicular direction

as a function of time; see Fig. 1E. This correlation in combina-
tion with measurements of the shear modulus performed by
Shimamoto et al. (10) provides a measurement of the spectrum
of active stress fluctuations ΔðwÞ. Since the correlations are mea-
sured on the perpendicular direction, we need to calculate all of
the contributions to stress correlations with components on the
perpendicular direction. The full expression for these stress fluc-
tuations is complex and has contributions from all terms in the
total stress (Eqs. S4−S6), and we do not present its complete
form here. However, for the interpretation of microrheology
data, the relevant quantity is the stress fluctuations in the long-
wavelength limit ðq= 0Þ. In this limit, the only nonvanishing con-
tribution to the stress correlation comes from the active stress
(Eq. S6) and is
	
δσyzð0;wÞδσyzð0;−wÞ
= 4W 2c20

	
δnyð0;wÞδnyð0;−wÞ


= 4W 2c20S
2
yw

−2 ≡ΔðwÞ: [S29]

From Shimamoto et al. measurements, the stiffness KðwÞ=K0wβ0 ,
with K0 = 1:07± 0:07  nN=μm, and β0 = 0:39± 0:04. Taking into
account the geometry of the glass needle used in their mea-
surements, the stiffness is related to the shear modulus by
jKj= 8πaμ=½logð2a=bÞ+ 1=2�, where we considered the needle as
an ellipsoid (14) of length a, the penetration length in the spindle
∼30 μm, and width b ∼2 μm, resulting in a shear modulus
μðwÞ= μ0w

β0 , with μ0 = 5:5± 0:4  pN=μm2. Since we measured the
correlations of the tracers in real time, we express Eq. S28 as
a function of time,



C««ðR; tÞ


=

4W 2c20S
2
y

6π2Rμ20







sin
�ð−2− 2β0Þπ

�
t1+2β0Γ

�
−1− 2β0

�






:

[S30]

We obtain the stress fluctuations using ΔðtÞ= 2W 2c20S
2
y t,

ΔðtÞ= C««ðR; tÞRμ203π2
sin
�ð−2− 2β0Þπ

�
t2β0Γ

�
−1− 2β0

�: [S31]

Spindle shape. We approximate the shape of the spindle as an
ellipse with constant density and fixed volume. We search for
a solution lacking hydrodynamic flow, v = 0, because: (i) the
speed of movement of tubulin molecules in the spindle is in-
dependent of their distance from the spindle axis (1), suggesting
that internal variations in v must be negligible; (ii) on occasion,
a global flow of extract is present in samples (measured by flow
of vesicles and other inhomogeneities in the cytoplasm), but,
while the flow is retarded by the spindle and does not penetrate
the spindle, the flow does not cause any deformation of spindle;
thus, spindle morphology is insensitive to the presence of ex-
ternal flows; and (iii) the curl of the director field in the spindle
is observed to be negligible (see below), arguing that internal
circulating flows are not possible.
In the absence of hydrodynamic flows, the orientation Eq. S1

is simply

∇2θðxÞ= 0; [S32]

which is coupled to force balance through the boundary condi-
tions, taken to be given by tangential anchoring (see Fig. S1).
Therefore, the orientation of microtubules in the spindle does
not depend on any parameters in the theory and is determined
solely be geometry. The solution of this equation for an ellipse with
the same aspect ratio as the spindle quantitatively agrees with the
orientation profile in the spindle measured using the LC-Polscope
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(see Fig. 3 A and B), further validating the assumption of vanish-
ing hydrodynamic velocity.
For the magnitude of polarity, we take the lowest order in

gradients from Eq. S2 in absence of hydrodynamic flows or density
gradients,

−λ1pðzÞ∂zpðzÞ+
�
α− βpðzÞ2

�
pðzÞ= 0; [S33]

with solution pðzÞ= ffiffiffiffiffiffiffiffi
α=β

p
tanh½ð ffiffiffiffiffiffi

αβ
p

=λ1Þðz−L=2Þ�, where L is the
spindle length, and we have imposed pðL=2Þ= 0. We fit the profile
of the magnitude of polarity fixing a maximum value for polarity of
1 ð ffiffiffiffiffiffiffiffi

α=β
p

= 1Þ, which depends on the slope α=λ1, (see Fig. 3C).
Following Taylor (15), we can obtain an equation for the as-

pect ratio of the spindle by considering the force balance at the
central region and at the poles (see Fig. S1),

Hγ = σa⊥ −Π; [S34]

where γ is the surface tension of the spindle, σa⊥ is the normal
active stress, and we have ignored nematic elasticity. H is the
mean curvature, with values 2a=b2 and ba−2 + b−1 at the pole

and hemisphere, respectively. Solving for the pressure at these
two points,

γ
�
2ab−2 − ba−2 − b−1

�
= ½σa⊥�z=a − ½σa⊥�z=0: [S35]

The left-hand side can be rewritten as γð2α−2=3 − α5=6 − α−1=6Þ=R0,
where α= 1− e2 = a2=b2, e2 = 1− a2=b2, and R0 is the radius of a
sphere with equal volume to the spheroid. At the hemisphere ðz= 0Þ,
the director is oriented in the z direction and ½σa⊥�z=a = σyy +
σxy + σzy =−ð1=3Þc0W . ½σa⊥�z=0 = σzz + σyz + σxz =−ð1=12Þc0W . In
the last equality, we have calculated the average of this stress
in a defect at the pole using hnznzi= 1

π2

R π=2
−π=2

R π=2
−π=2 dϕdθ cos

2 θ
cos2 ϕ= 1=4, and hnxnzi= hnynzi= 0.
The final equation for the aspect ratio of the spindle reads

R0c0W
4γ

=−2α−2=3 + α5=6 + α−1=6: [S36]

From the shapes of both retardant and fluorescence spindles, we
obtain α = 3.0 ± 0.5 (SE, n = 16), which is consistent with a
surface tension γ = 143± 24 pN=μm (SE from error propagation
of error in α and c0W ).
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Fig. S1. Force balance and tangential anchoring, related to Fig. 3. Schematics of a spheroid representing the spindle. Forces due to normal components of
active stress and pressure balance surface tension (brown, red, and blue arrows, respectively). Active stress is anisotropic, with a larger component along the
longitudinal direction of the spindle. Microtubules are tangent to the boundary (green arrows) and form half defects at the poles.

Movie S1. Retardance movie, related to Fig. 1. Time-lapse movie of the retardance from the LC-Polscope. Frame rate 1/4s; 50× speed.

Movie S1
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Movie S2. Slow axis movie, related to Fig. 1. Time-lapse movie of the slow axis from the LC-Polscope. Frame rate 1/4s; 50× speed.

Movie S2

Movie S3. Fluorescence movie, related to Fig. 1. Slice of a 3D time-lapse movie of a spindle labeled with fluorescent tubulin. Frame rate 1/4s; 50× speed.

Movie S3
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Movie S4. Single molecule movie, related to Fig. 1. Time-lapse movie of a spindle labeled with low density of fluorescent tubulin. Frame rate 1/2.1s;
50× speed.

Movie S4
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