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Abstract

We describe a method for automatically finding the location and conformations of
microtubules in tomograms of high-pressure frozen, freeze substituted cells. Our
approach uses two steps: a preprocessing step that finds locations in the tomograms
that are likely to lie inside microtubules and a tracking step that uses the preprocessed
data to identify the trajectories of individual microtubules. We test this method on a
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reconstruction of a Caenorhabditis elegans mitotic spindle and we compare our results
with those obtained by a human expert who manually segmented the same data. At
present, the method could be used to assist the analysis of large-scale tomography
reconstructions. With further improvements, it may be possible to reliably segment
cellular tomograms without human intervention.

I. Introduction

Electron microscopy and tomography are increasingly used to study larger and larger
systems, including organelles (Marsh, 2005), whole cells (Hoog et al., 2007), and
perhaps, in the near future, complete organs (Briggman and Denk, 2006). This work
has the potential to transform our understanding of cell and developmental biology by
(1) bridging the gap in length scale between the structure of protein complexes—
obtained from X-ray, NMR, and electron microscopy—and the structure of entire
cells—obtained by light microscopy; (2) allowing massive data sets to be studied so
the statistical significance of trends can be analyzed; and (3) enabling investigations of
the spatial distribution of features which are too small to resolve by light microscopy.
There has been remarkable progress in sample preparation, data acquisition,

and assembling reconstructions for these large-scale electron microscopy studies
(Briggman and Denk, 2006; Hoenger and McIntosh, 2009), but the development of
methods for analyzing the resulting data have lagged behind. In cellular tomography,
most image segmentation—the identification of microtubules, membranes, and other
features of interests—is still performed manually. While this approach can be highly
accurate and has been very successful to date, the segmentation step is often the most
time-consuming part of such work. As larger systems are investigated, purely manual
segmentation will no longer be practical. For example, it currently takes a skilled
human a few hours to track all of the microtubules in a tomographic reconstruction of a
small spindle, such as from yeast. Spindles in human cells have a volume approxi-
mately 1000 times larger than spindle from yeast cells, so at this rate, it would take an
expert a good part of a year to segment. Spindles from Xenopus egg extracts, another
popular model system, have a volume about 10 times larger than spindles in human
tissue culture cells; thus the resulting analysis of these structures is expected to take 10
times longer still. Fully automated or computer-assisted approaches have the potential
to greatly speed segmentation. There have been previous attempts to automatically
segment tomograms of plastic-embedded samples, but this remains a challenging
problem (Jiang et al., 2006; Sandberg, 2007).
In this chapter, we describe our efforts to develop an automated method of

segmenting microtubules in cellular tomograms of plastic-embedded, freeze substi-
tuted samples. We mention a number of unsuccessful approaches we tried; we
present an algorithm which gives satisfactory results; we demonstrate the method
on a tomographic reconstruction of a C. elegans mitotic spindle and compare the
automated results with manual segmentation performed by a human expert; finally,
we detail ways our method can be improved.
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II. Overview

Tomography data is intrinsically three dimensional (3D), consisting of a matrix of
voxels with a gray value at each location. Microtubules are low-contrast objects that
appear as two thin dark lines (Fig. 1). The resolution of tomograms is asymmetric,
being much higher in the XY plane than in Z, and microtubules are difficult to see if
they are not parallel to the viewing axis. As a practice data set, we use a reconstruction
of a C. elegans mitotic spindle from (O’Toole et al., 2003). The data set is a dual-axis
tomogram of two serial sections that have been pasted together. The final reconstruc-
tion is a 2880� 1024� 286 array of voxels which are 1.7 nm per side and have an
intensity value ranging from 0 to 255.

Our method for finding microtubules consists of two steps: First, we identify points
that are likely to be part of a microtubule. In this step, which we call preprocessing, we
transform the original image into a new image, where the intensity of each voxel is a
measure of our confidence that a microtubule exists at that location. Second, we
connect these points into lines. We call the algorithm which performs this second
task a tracker, because its goal is to track the trajectory of individual microtubules.

Both the preprocessing step and the tracker make use of a number of parameters
whose values must be selected. Optimizing the choice of parameters requires some
method of measuring the quality of the results. Validation of image recognition tasks,
like finding microtubules in tomograms, is a very difficult problem because we do not
know what the “ground truth” is—where the microtubules really are. After all, if we

Fig. 1 A typical XY slice from a tomogram of a C. elegans spindle (O’Toole et al., 2003). The dark long
double lines are the walls of microtubules, the black dots are ribosomes, and the smooth region on the top left
is a reconstruction artifact from the proximity of the physical edge of the sample. This region is 512� 512
pixels. Each pixel is 1.7� 1.7 nm.
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already had an ideal way of knowing the location of all microtubules in the tomogram,
we would use that as our method for finding microtubules instead of trying to develop
a new algorithm. Our method of validation is to simply compare our results with those
obtained manually by a human expert. We thus attempt to choose parameters that give
results which are similar to those obtained by manually tracking.
We will next describe each of these steps in more detail: preprocessing, tracking,

validation, and future directions.

III. Preprocessing: Finding Points in Microtubules

We have opted to use two–dimensional (2D) algorithms for our preprocessing step.
The tracking algorithm then connects the preprocessed data into trajectories that follow
the backbone of the microtubules in 3D. While a 3D processing step would make use
of additional information, and thus would presumably be more reliable, we believe that
there are a number of advantages associated with employing a simpler 2D preproces-
sing step. Most importantly, 2D images are much easier to work with and visualize,
greatly aiding in testing and debugging the algorithm. Additionally, electron tomogra-
phy has different resolution and noise structure in the XY and Z directions, so the data is
already intrinsically anisotropic. Finally, 2D preprocessing is very easy to parallelize,
as each XY slice can be analyzed by an independent computational node.
A 512� 512 pixel region from an XY slice of a tomogram of a C. elegans mitotic

spindle is shown in Fig. 1. The set of dark double lines are the walls of microtubules
and the black circles are ribosomes. The smooth region in the top left corner is caused
by errors in the reconstruction associated with joining together two tomograms from
separate physical blocks. We have explored a number of different approaches for
identifying which points in images like this are in microtubules. Many of our attempts
failed before we developed a method we were satisfied with. We will first discuss
various unsuccessful methods that we explored.

A. Unsuccessful Approaches

The walls of microtubules appear as two dark lines, so it is natural to attempt to find
them by thresholding the image. Unfortunately, this simple approach produces so
many false positives that it is not productive (Fig. 2). This method can be improved
by using a local threshold—based on the difference between a pixel’s intensity and the
average intensity in its vicinity—or by first filtering out ribosomes. However, the
performance is quite poor, even with these enhancements.
A common approach for finding features in an image is to use a convolution.

A convolution provides a measure of how much a local region in the image matches
a mask of interest. First, we need to generate a convolution mask—an average image of
a microtubule. We have done this either empirically by averaging together images of
microtubules found manually or by conjecturing a simple model for a microtubule, two
dark lines spaced an appropriate amount. Both methods produce similar results. If we

478 Daniyar Nurgaliev et al.



simply convolve the data with one of these masks, we are effectively looking for
microtubules of a particular orientation. Microtubules in the image could be facing any
direction, so we need a more flexible approach. We constructed 60 different masks by
rotating one of the original masks in 3 degree increments. Each of these masks can be
used to probe the image for a microtubule oriented at the corresponding angle. We
created a new image by replacing the intensity of each pixel with the maximum value
at the corresponding location obtained from the 60 different convolutions with the 60
different masks. By the logic outlined above, this procedure should provide an estimate
of how well a particular region matches the profile of a microtubule, independent of its
orientation. The resulting image is visually striking, but, unfortunately, it is not helpful
for locating microtubules (Fig. 3). This simple algorithm fails because of the complex-
ity and noise structure of the tomography slices.

An alternative method is to use more sophisticated approaches to search for lines in
the image (Lindeberg, T. 1998). This will not be sufficient for finding microtubules
because they are composed of pairs of lines, but it might be a reasonable starting point
for a more involved procedure. A line is an object that is flat in one direction and has a
local extremum in the perpendicular direction—dark lines, like those from the micro-
tubules wall, will be a local minimum. These statements are claims about the deriva-
tives of the image: a region in the image is a line if it has a zero first derivative and a
large second derivative along one direction, and a small second derivative in the
perpendicular direction.

Computing derivatives in images faces two challenges: (1) The data is not a contin-
uous function, rather, it is composed of discrete pixels. (2) Directly taking differences

Fig. 2 Intensity thresholding. The region displayed in Fig. 1 was thresholded to highlight pixels with
intensities between 100 and 150—the range present along the microtubule walls. While this procedure selects
microtubule walls, there are also a very large number of false positives.

25. Automated Identification of Microtubules in Cellular Electron Tomography 479



between neighboring pixels produces poor estimates of the desired derivatives because
of the presence of noise. A convenient way to circumvent these difficulties is to first
smooth the image by convolving it with a Gaussian kernel:

Isðx; yÞ ¼
X
i;j

Iij
1

2��2
exp �ðx� iÞ2 þ ðy� jÞ2

2�2

 !
¼ I � G� ð1Þ

where Iij is the original image, Isðx; yÞ is the smoothed image, and � is the width of
the Gaussian kernel. An advantage of this approach is that it easily allows one to
search for features at a particular length scale, set by the width of the Gaussian. Each
microtubule wall in an XY slice of the tomogram appears as a dark line with a width
of approximately 3 pixels, so it is appropriate to convolve the image with a Gaussian
of width � = 3 pixels.
The derivative of this smoothed image can then be efficiently computed by convol-

ving the original images with the derivatives of a Gaussian. The first derivatives
consist of a vector at each location whose components are the derivatives in the x
and y direction:

I 0s ¼ ½I 0sx; I 0sy� ¼ ½I � G�x; I � G�y� ð2Þ

Fig. 3 Direction-independent convolution with a microtubule model. A mask to identify microtubules was
empirically constructed by averaging the profile of many microtubules. The mask was oriented in 60 different
directions and convolved with the region displayed in Fig. 1. Each pixel in this image corresponds to the
maximum value at that location obtained from the different convolutions. Microtubules are visible as long
bright lines, but the background structure is very strong and complex.
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Higher order derivatives can be calculated with additional convolutions. Thus, the
second derivatives form a matrix, called the hessian matrix, at each location, which is
computed through further convolutions:

I 0s ¼ I 0sxx I 0sxy
I 0syx I 0syy

� �
¼ ½ I � G�xx I � G�xy

I � G�yx I � G�yy
� ð5Þ
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Now points on lines can be identified as pixels where the intensity is flat in
one direction—one of the eigenvalues of the hessian matrix has a small absolute
magnitude—and the intensity has a local minimum in the other direction—the other
eigenvalues of the hessian is large and positive, and the first derivative along that
direction is zero. One complication is that, because the image is made of finite-size
pixels, the first derivative will not be identically zero near the minimum. We thus
need to determine if the first derivative is likely to pass through zero inside a pixel,
which can be achieved by approximating the pixilated image as a continuous func-
tion. Consider the variation in intensity at a pixel along the x axis. This can be
approximated as follows:

Isðx; 0Þ¼ Isð0; 0Þ þ xI 0sxð0; 0Þ þ 1

2
x2I 0sxxð0; 0Þ þ Oðx3Þ ð9Þ

The first derivative of this function is zero at x ¼ �ðI 0sx=I 0sxxÞ. If this value is less
than 0.5 pixels, then the function has a local extreme inside that pixel. Furthermore,
if I 0sxx is positive, this is a local minimum.

Running this algorithm to search for lines produces many false positives (Fig 4).
The problem is that the described algorithm searches for any feature that locally
looks like a line of width � and ends out picking up linear structures present in the
background.
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B. Our Approach

The failure of the local ridge finding algorithm described above inspired us to
develop an ad hoc method of finding extended lines in images. Our method makes
use of the fact that microtubule walls are not just linear objects; they are linear objects
that point in the same direction for a long distance.
We first smooth the image by convolving it with a Gaussian kernel of width �= 3

pixels. Next, we choose a particular direction to interrogate and calculate the first and
second derivatives in that direction. We find points which are local minima along this
direction as described above: by identifying locations where the second derivative is
positive and the absolute value of the ratio of the first and second derivatives is less
than 0.5 pixels. Figure 5 shows local minima along a direction –9 degrees to the
vertical, obtained by performing this procedure. The displayed auxiliary matrix has a
value of 1 at pixels which are local minima along the selected direction and a value of 0
at all other locations. We then searched for extended lines by convolving the auxiliary
matrix with a binary mask of length L= 41 pixels in the orthogonal direction and
thresholding to only select regions with a sufficient number of adjacent local mini-
mum. This operation will incorrectly shorten lines, since their ends will not have
enough adjacent minima to register, so we dilate the lines a corresponding amount to
correct for this defect. Figure 6 show the regions corresponding to extend lines of the
appropriate orientation found in Fig. 5. We then repeat the entire procedure to look for
extended lines at 60 different angels, spaced in 3 degree increments.
Next, we combine the output of the searches for extended lines in different direc-

tions by creating another auxiliary matrix, which has a value of 1 for pixels where an

Fig. 4 Ridge detection. Locally linear features present in the region displayed in Fig. 1 where identified as
described in the text. While the double lines of the microtubule walls are partially visible, there are a large
number of false positives and false negatives.
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extended line was found in any orientation, and a value of zero at all other pixels. The
resulting matrix is depicted in Fig. 7. Finally, we probe for double lines—the two walls
of a microtubule—in this data by a similar procedure in which we convolve with
double lines in all directions and threshold. This preprocessing does an excellent job of
locating microtubules (Fig. 8).

Fig. 6 Extended lines in Fig. 5 were identified by convolving with a linear segment of the appropriate
orientation, thresholding to find regions of a large enough length, and dilating to correct for end effects.

Fig. 5 The auxiliary matrix obtained by finding local minima along a direction –9 degrees from the
vertical in the region displayed in Fig. 1. Note that many linear structures are present at different orientations.
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The preprocessing algorithm contains several parameters that need to be set: the
width of the Gaussian used for calculating the derivatives, the length L of the mask,
and the two thresholds for the convolutions. Adjusting these values can make the
procedure more lenient—with fewer false negatives but more false positives—or more
stringent—with fewer false positives but more false negatives.

Fig. 8 The final results of the preprocessing step (white) displayed over the original image. Note that
while most microtubules are well identified, false positives are also present.

Fig. 7 The location of extended lines from the region depicted in Fig. 1, obtained from 60 different
auxiliary matrices such as the one depicted in Fig. 6. See text for details.
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IV. Tracking: Connecting Points into Lines

The preprocessing step of our microtubule detection algorithm finds points that are
likely to be inside microtubules. However, at this stage, we have not identified which
points are contained in the same microtubule. This data also has errors: some points
that we identify as being in microtubules might not really be in microtubules (false
positives) and some points that are really in microtubules are not found by our
algorithm (false negatives). Moreover, we would like to obtain information on the
global properties of microtubules: How many microtubules are present in the tomo-
gram? Where are they located? How long are they? What are their conformations?
Ideally, we would like to represent each microtubule as a smooth curve that traces the
microtubule’s center line, so we can analyze properties of microtubules instead of
properties of points that are in microtubules. Therefore, we need to connect the
previously identified points into curves. We call the algorithm that performs this task
a tracker, because it tracks the trajectory of individual microtubules.

Developing a tracking algorithm is challenging because the preprocessed data has a
number of imperfections (Fig. 9):

• Several pixels are identified near the center line of microtubules, making the
microtubule’s exact position difficult to localize. These regions are only a few
pixels wide in the XY plane, but their extent in the Z direction can be quite
variable, and their width is not uniform along microtubules.

• There are gaps in microtubules: regions along their length where no points are found.
A naive tracking algorithm might identify these gaps as true breaks, incorrectly finding
multiple short microtubules where in reality only one long microtubule is present.

• Microtubules can pass close to each other and a poor tracker might falsely fuse two
separate microtubules.

• Points which are clearly not associated with a microtubule are falsely identified as
being in microtubules. These false positives can occur at relatively isolated locations
or in clusters. Clusters of false positives are particularly difficult to distinguish from
short microtubules. These clusters are often adjacent to microtubules.

Thus we need a tracking algorithm which can identify microtubules and find their
trajectories despite the flaws that are present in the preprocessing step. One powerful
method for tracking lines and other extended objects are “active contour models” (Kass
et al., 1988), in which an energy function is defined such that a local minimum
corresponds to a tracked object and, ideally, the global minimum corresponds to all
objects being located. When implementing active contours one has to choose an
appropriate energy function. For tracking lines in high-quality images, such as the
ones we obtain after a preprocessing step, active contour methods can be quite robust;
thus constructing a suitable energy function is straightforward. The method is actually
so powerful that it can even be used to track microtubules in the original, raw data,
without the preprocessing step, but the results are less satisfactory. In the next section
we will provide an introduction to active contours from a slightly more physical
perspective than is standard (Kass et al., 1988).
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A. Active Contour Models and Many-Body Simulation

Active contour models are a class of image analysis methods for finding extended
objects—such as lines. In this approach, active contours—one-dimensional (1D)
curves—are placed on the image and the energy is calculated based on the location
and conformation of the contours. Then the contours are rearranged to search for the local
energy minimum, which corresponds to the tracked positions of the lines. To implement
this procedure, one needs to choose an appropriate energy function and an energy
minimization algorithm. We shall start by considering the choice of energy function.
First, consider a single active contour designed to look for weakly bending lines in

an image. An intuitive and useful choice is to select an energy functional which
corresponds to an elastic string in an external potential:

Econtour ¼ Epotential þ Ebending þ Elength ¼
Z

Uðx!ðlÞÞdl

Epotential

þ
Z

k

RðlÞ2 dl

Ebending

� �L

Elength

ð10Þg g g
B

C

A

D

E

C

C

(A)

(B)

Fig. 9 (A) An XY slice of the preprocessing results; different types of errors and difficulties are present:
A, isolated noise; B, cluster noise; C, false positives adjacent to a microtubule or between two microtubules; D,
gaps (false negatives); E, close approach of two microtubules. (B) An XZ slice of the preprocessing results.
The thickness of a microtubule in the preprocessing stage varies greatly in Z. Finding center the of the
microtubule in Z is challenging.
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The energy of the active contour consists of three components: the overlap of

the contour and the image (Epotential ¼
Z
Uðx!ðlÞdlÞ), how straight the contour is

ðEbending ¼
Z
ðk=RðlÞ2dlÞÞ, and its length ðElength¼ ��LÞ. The first term,

Epotential ¼
Z
Uðx!ðlÞÞdl, represents the potential energy of the string. Here x!ðlÞ is a

parametric representation of the contour, where x! is the arc length along the contour
and l is the position of the corresponding point. U, the potential, is a function of the
image that determines which features are tracked. If U ¼ I (the intensity of the image),
then the energy will be lower in the darker regions, while if U ¼ �I the energy will be
lower in the brighter regions. If U ¼ �jHI j, the energy will be lower in the regions
with high-gradients - edges. More complex functions of the intensity may also be
useful. Second-order derivatives can identify local maxima or minima, and we have
found that it can be helpful to include nonlocal contributions.

The second term in the energy, Eelastic ¼
Z

ðk=RðlÞ2Þdl, represents the elastic energy
of the contour. Here, ð1=RðlÞÞ¼jðd2x!ðlÞ=dl2Þj is the curvature of the contour and k is
a bending modulus which weighs the relative importance of this term. If k is too small
then the contour will faithfully follow the minimum of the potential, which might lead
to overfitting of the data as even the local noise structure of the image will be tracked.
If k¼1 then only perfectly straight contours are allowed. The third term in the energy,

Elength¼��L, favors longer contours. L¼
Z
dl is the length of the contour and � is a

stretch modulus. The role of this term is to grow the active contour until it is as long as
the line to be tracked, but not any longer.

We have been discussing the energy of a single active contour, but many images of
interest will have multiple lines, and the described approach must be adjusted to
account for this situation. One option is to simultaneously model multiple contours
and assign an energy to the entire ensemble. Part of the energy will just be the sum of

the contribution of the individual contours:
X

i
EcontourðiÞ, where i is an index that

denotes the ith contour, the sum extends over the number of contours, N, and EcontourðiÞ
is the energy of the ith contour of the form discussed above. As the number of lines
present in the image is not known a priori, the number of contours, N, should be a
variable parameter, which will contribute an additional term to the energy
ðEchempotentialÞ. A natural choice is to set Echempotential ¼ vN . Here v is a chemical
potential which determines the cost of creating a new contour. This Echempotential term
favors fewer contours and can close gaps by causing two separate contours to fuse
into one. It is also undesirable if multiple contours identify the same line in the
image. Therefore, the contours should not be too close to each other. This condition
can be enforced by including an interaction term to the energy ðEinteractionÞ that
cause the contours to repel each other. A simple option is to define a pairwise
additive potential between strings, Uint, that depends on the distance between
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points on the strings. The interaction energy, Einteraction, will be of the formX
i;j

Z
string i

Z
string j

Uintðx!ðliÞ � x!ðljÞÞdlidlj, where the sum extends over all pairs of

contours, x!ðliÞ � x!ðljÞ is the distance between a point on contour i and a point on
contour j, and the integrals cover the lengths of each contour. Different choices for Uint

are possible, including a simple hard body interaction that prevents contours from
approaching closer than a specified distance.
Taken together, these considerations lead to the multicontour energy functional:

Etotal ¼
X
i

EcontourðiÞ þ Einteraction þ Echempotential

¼
X
i

EcontourðiÞ þ
X
i;j

Z
string i

Z
string j

Uint ðx!ðliÞ � x!ðljÞÞdlidlj þ vN
ð11Þ

This model maps the problem of finding lines in an image onto the “physical”
problem of finding the minimum potential energy of a many-body system. It would be
possible to directly perform a simulation of an ensemble of strings, in which they are
created, annihilated, grow and shrink, merge, and split. This very beautiful picture of a
dynamic many-body system has only a few parameters: three constants k; �; v and two
energy functions U ;Uint. Finding the lowest energy state of this system is equivalent to
solving a difficult image recognition problem! This analogy allows us to apply power-
ful methods for finding the minimum energy of complex systems developed in physics.
In addition, we can now use our physical intuition to make heuristic simplifications to
improve the performance of the tracking algorithim.

B. Tracking in Practice

So far, the discussion of our tracking approach has been very abstract. A number of
additional issues must be addressed when using this method to analyze actual data.
A real image is not a continuous distribution of intensity values, but rather consists of
discrete pixels. Similarly, we must decide how to represent the trajectory of the
contours. It is natural, and computationaly efficient, to discretize them as well.
A specific energy minimization algorithm must also be selected.
Contours could be represented as splines (piecewise polynomial curves) or polylines

(piecewise linear curves). As long as the resulting contours overlap the image to pixel
resolution (requiring an accuracy of half a pixel), these two representations will give
equivalent results. While the intrinsic smoothness of splines is ascetically pleasing,
polylines are more convenient to work with, so we use them instead. Moreover, we can
convert polylines to splines afterward to achive subpixel resolution of the microtubule
centerlines. While the length of the segments in the polylines may dynamically vary
during the simulation, we still need to choose a characteristic default length that is
convienient. If the segments are too short, then calulations will be inefficient, but if
segments are too long the discrete nature of the polyline will cause artifacts. We would
like the polyline to deviate less than half a pixel from the trajectory of the continous
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curve it is supposed to represent. Thus, if the smallest radius of curvature of a
microtubule we expect to encounter is of order 1000 pixels, the characteristic length

of the polyline segment should be less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð0:5Þð1000Þp

» 60 pixels (where the
factor of 8 arises from basic geometric considerations). In practice, we have found that
using a segment size of 30 pixels works well.

There are many methods for computationaly finding the minimum of a function, but
our analogy with a physical system suggests that we use either Molecular Dynamics or
Monte Carlo simulations. Molecular Dynamics simulations define equations of motions
based on “forces” arising from the prescribed energy functional and use them to evolve
the system forward from its intial configuration. For complex energy landscapes,
Molecular Dynamics simulations can get stuck in local minima, making it difficult to
find the true minimum of interest. Molecular Dynamics simulations have been used with
active contours to track actin filaments from fluorescencemicroscopy (Li et al., 2009a, b),
but the corresponding images have a much higher signal to noise than tomograms, so the
resulting energy landscape is simpler. Monte Carlo simulations, in which trial moves are
made and probablistically either accepted or rejected depending on the resulting change
in energy, are more efficient for finding the global minimum in high-dimensional spaces
with complex energy landscapes (Metropolis et al., 1953). One powerful form of Monte
Carlo simulation, called Simulated Annealing (Kirkpatrick, 1983), starts by frequently
accepting energetically unfavorable moves and gradually lowers the “temperature,”
becoming more and more stringent over time. It is difficult to know what Simulated
Anealing protocol is best to use—how fast to lower the temperature and when to stop the
simulation—but the technique is still very useful. We next describe an implementation
that can track microtubules in tomograms, even without any preprocessing.

C. Tracking in the Original Images

In this section we will illustrate how the presented tracking methods can be used to
find microtubules in tomograms, even without the benefit of a preprocessing step. Since
this is only intended to demonstrate our approach, we will limit the discussion to the
task of finding a single microtubule in a 2D slice. In the next section we will show how
preprocessing improves the quality of the data so greatly that the tracker can be further
simplified and we expand the approach to handle the full 3D, multicontour problem.

We need to specify a potential, U that will be helpful for finding microtubules.
A microtubule in a 2D slice of a tomogram appears as two dark, parralel lines (Fig. 1),
so it is natural to choose U¼ Iðx!ðlÞ þ w

2 n
!ðlÞÞ þ Iðx!ðlÞ � w

2 n
!ðlÞÞ, where n!ðlÞ is a

vector normal to the contour at point x!ðlÞ and w is the width of a microtubule. This
results in an energy function for a contour:

Econtour ¼ Epotential þ Ebending þ Elength

¼
Z

Iðx!ðlÞ þ w

2
x!ðlÞÞ þ Iðx!ðlÞ � w

2
n!ðlÞÞ

2
4

3
5dl þ

Z
k

RðlÞ2 dl � �L
ð12Þ
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We next need to determine appropriate values for the three parameters w; �, and k.
By inspection, the width of a microtubule is 10 pixels, so we set w¼10. We want to
select a value of � such that the Elength term in the energy will compete with the Epotential

term, so a contour grows if it is on a microtubule and shrink if it is off one. The average
image intensity is 165 and the average intensity along the walls of a microtubule is
140–150. Therefore, choosing �¼155 will have the desired effect of making Epotential

dominate if the contour is on a microtubule and Elength be larger if the contour is off a
microtubule. As long as the bending modulus k is not too large its exact value does not
seem to effect the results and we select k¼5� 106.
To find the global minimum we use a Monte Carlo algorithm. We start a contour in

a random configuration and evolve its position through a series of steps. A trial move
is made by displacing, growing, or shrinking the contour and the move is either
accepted or rejected depending on how it changes the system’s energy. If the new
conformation lowers the energy, then the move is accepted. If the new conformation
increases the energy, the move is accepted with probability expð�DE=TÞÞ, where DE
is the change in the contour’s energy and T is the “temperature”—a parameter that
determines how frequently energetically unfavorable moves are allowed. This process
is repeated until the simulation ends. To avoid having the contour be stuck in
unwanted local minimuma, we use a Simulated Anealing protocol in which we start
with a high temperature, T¼150, and gradually decrease it, by 2% every 200 steps.
When the temperature becomes very low, the contour “freezes” in its current local
minimum.
The initial state of the contour is a single segment with a random position and

orientation. The following types of moves were implemented in the simulation:

• Growing by one segment (at one end or another).
• Shrinking by one segment (at one end or another, if the polyline is longer than 1

segment).
• Random displacement of a single vertex of the polyline.

When the simulation starts, the segment travels in the image until it overlaps a
microtubule. The contour rapidly grows along the microtubule, but will occasionally
reverse direction, quickly shrinking back to the original one-segment length. Amus-
ingly, the process is highly reminiscent of the polymerization of microtubules by
dynamic instability! After annealing is complete, the contour settles in on the position
of a microtubule. While the found trajectory is often very accurate, errors are present.
Figure 10 shows an example where the contour suddenly shifts to the side, following
one edge of the microtubule and noise instead of tracing the true microtubule back-
bone. This type of error occurs because the energy landscape is highly complex, and the
efficiency with which local minimum are circumvented is sensitive to the annealing
protocol. Another drawback of the algorithm is that it is very slow. It is therefore highly
advantageous to use the preprocessed images discussed earlier—resulting in a simpler
energy landscape—and to streamline the Monte Carlo simulation, greatly speeding up
the algorithim.
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D. Tracking in the Preprocessed Images

In the preprocessed data, the location of microtubules are given by bright lines, so
we can simply set UðxÞ ¼ �IðxÞ. The resulting energy is as follows:

Econtour ¼ Epotential þ Ebending þ Elength ¼ �
Z
Iðx!ðlÞÞdl þ

Z
k

RðlÞ2 dl � �L ð13Þ

This potential has two parameters, k and �. As before, the end result is relatively
insentive to the value of k, and we set it to k ¼ 5�106. � should be intermediate
between the intensity of points on microtubules and the intensity of points not on
microtubules. One convenient approach to determine this level is to plot a histogram of
intensity values in the preprocessed data. Then, after making an estimate of the volume
fraction of microtubules, we can choose a value of � which an appropriate fraction of
intensity values are above—corresponding to points on microtubules.

The preprocessed data is of very high quality, allowing substantial simplifications of
the Monte Carlo simulation. First, because most microtubules are well separated from

Fig. 10 Simulated annealing for tracking in the original images. Steps 1200–2400: a single segment
moves randomly in the image. It does not grow when it is not on a microtubule. Step 3600: the segment
overlaps with the microtubule and aligns with it. Growing from this position can lower the energy. Step
4800: the segment does grow from the position found on step 3600. However, it is not well aligned with
the microtubule backbone. Step 6000: the contour undergoes a displacement causing it to more
accurately follow the microtubule backbone, and the energy is substantially reduced. Steps 7200–8400:
the polyline continues to grow inside the found microtubule. Step 9600: the contour has grown nearly the
entire length of the microtubule. Note the region on the left: the contour jerks to the side and follows one
microtubule wall and noise, instead of the true microtubule center line. This problem could be solved by
increasing the bending rigidity, k, or by finding different parts of microtubules and fusing them in many-
body simulation.
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each other, we do not explicitly perform the full many-body simulation. We simulate a
single contour at a time, identifying the trajectory of each microtubule in the image
independently. Second, we do not start the contours at random locations. Initial
segments are added at points likely to be on microtubules—high-intensity pixels in
the preprocessed images. Third, the preprocessed data is very smooth and has little
noise. Therefore, the energy landscape has few unwanted local minima, and we can
perform the Monte Carlo simulation at zero temperature—only accepting moves that
decrease the contour’s energy. With these considerations in mind, our resulting algo-
rithm is as follows:

1. Find a high-intensity pixel in the image, this point is likely to be on a microtubule.
Start a new, one-segment contour at this location at an orientation that minimizes
the energy.

2. Grow the contour one segment at a time with a conformation that minimizes the energy.
3. If adding the segment results in an increase in energy, then this indicates that that

portion of the contour is unlikely to be on a microtubule. This could be for two
reasons: the contour might have grown past the end of the microtubule or there
could be a gap in the microtubule caused by false negatives from the preprocessing
step. We first check for a gap by attempting to grow the microtubule even farther to
see if it can find another region that is likely to be part of the same microtubule. If a
gap is not identified, then we continuosly shrink the contour until removing length
no longer decreases the energy, at which point the microtubule end has been
identified.

4. Refine the trajectory of the contour by repeatedly moving each point of the polyline
by a random vector and keeping the move if the contour’s energy is lowered.

5. Remove the found microtubule from the image by setting I(x) to zero at all points
within 5 pixels of the contour’s final position.

Fig. 11 Tracker’s performance. The gray regions are points likely to be inside microtubules generated from
the preprocessing step. The tubes mark the continuous lines found by the tracking algorithm.
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6. Start again at step 1 in the new updated image and repeat until all points that are
likely to be in a microtubule—those above a predetermined intensity value—have
been interrogated.

Contours that are too short are most likely caused by noise and are discarded. The
remaining contours give the locations and conformations of the tracked microtubules.
This tracking algorithim is rapid and gives results that appear to be very good (Fig. 11).

V. Validation and Future Work

Simple visual inspection indicates that our algorithm accurately finds many micro-
tubules in the tomogram. However, it is highly desirable to have a more systematic
means of testing the success of our approach for automated microtubule identification.
Having an objective validation scheme is important for optimizing the parameters
used in the algorithm, discovering what type of errors are present so we can introduce
new steps to minimize them, and understanding how reliable the results are. We
therefore compared the output of our method with previously obtained results from a
human expert who manually identified microtubules in this data set (O’Toole et al.,
2003) (see Fig. 12)

While many microtubules manually identified were found with our automated
approach, we discovered a number of errors. The most common mistakes are as
follows:

1. Some microtubules that were found manually were entirely missed by our
algorithm. Many of these missed microtubules were located near the centrosome,
where the noise structure is different than in other parts of the tomogram. Other
missed microtubules pass through the XY planes at very steep angles.

2. Our automatically identified microtubules tend to be shorter than the manually
identified ones: our algorithm has difficulty accurately finding the end of
microtubules.

3. Long microtubules are sometimes incorrectly identified as multiple, short
microtubules by our method. These errors arise because our tracking
algorithm does not sufficiently correct for gaps in microtubules present in the
preprocessing step.

We are in the process of developing ways to avoid these errors and we are
attempting to use automated approaches to optimize the values of the parameters in
our algorithm. One difficulty is that there are also errors in the manual data: some
microtubules found by our algorithm were missed by the human expert and our
automated method more accurately identifies the precise location of microtubule
center lines.

Despite the mistakes that are present and the need for further optimization, our
approach performs quite well for the tomogram under study. One concern for future
applications is that the parameters in the algorithm may have to be adjusted for
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different biological samples and different microscope settings. A hint that this proce-
dure might not be straightforward is that the success of the preprocessing step can even
vary within a sample: our algorithm performed worse near centrosomes, which exhibit
a different background than other regions in the reconstruction. We are currently
exploring the use of machine learning techniques to overcome this difficulty with
preprocessing. Our preliminary work using Support Vector Machines (SVMs) is
extremely promising. We create a training set by having a user click on several regions
containing microtubules and several regions where microtubules are absent. With
enough examples, SVMs are excellent at recognizing microtubules. Furthermore, the
process of training is interactive: a user can improve the performance of the SVM by
noting areas where it makes mistakes.
At the present stage of development, our automated method is not sufficiently

reliable to replace manual tracking by a human expert. It could be used to provide
an initial guess for the location of microtubules, which can then be corrected by a
human. While this computer-assisted approach would still be cumbersome, it should be

(A) (B)

(C) (D)

(E) (F)

Fig. 12 Comparison of manual and automatic tracking: (A) All microtubules found by a human expert
(O’Toole et al., 2003). (B) All microtubules found by our algorithm. (C) Parts of microtubules found both by
manual and by automatic tracking. (D) Microtubules missed completely in automatic tracking. Many are
concentrated near the centrosome where the noise structure is different. Some are oriented at steep angles
to XYplane. (E) Missing ends and gaps in the automatically identified microtubules. (F) Parts of microtubules
found by our automatic algorithm and absent in the manual tracking result. Some of these are false positives,
but others are true microtubules that were missed by the human expert.
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much faster than currently used, entirely manual methods. As our method is improved
and new approaches are developed, it may eventually become possible to segment
tomograms without human intervention. Such a development would greatly facilitate
the analysis of large-scale tomographic reconstructions of cells.
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