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Cytoplasmic flows as signatures for the 
mechanics of mitotic positioning

ABSTRACT  The proper positioning of mitotic spindle in the single-cell Caenorhabditis ele-
gans embryo is achieved initially by the migration and rotation of the pronuclear complex 
(PNC) and its two associated astral microtubules (MTs). Pronuclear migration produces global 
cytoplasmic flows that couple the mechanics of all MTs, the PNC, and the cell periphery with 
each other through their hydrodynamic interactions (HIs). We present the first computational 
study that explicitly accounts for detailed HIs between the cytoskeletal components and 
demonstrate the key consequences of HIs for the mechanics of pronuclear migration. First, 
we show that, because of HIs between the MTs, the cytoplasm-filled astral MTs behave like a 
porous medium, with its permeability decreasing with increasing the number of MTs. We then 
directly study the dynamics of PNC migration under various force-transduction models, in-
cluding the pushing or pulling of MTs at the cortex and the pulling of MTs by cytoplasmically 
bound force generators. Although achieving proper position and orientation on reasonable 
time scales does not uniquely choose a model, we find that each model produces a different 
signature in its induced cytoplasmic flow. We suggest that cytoplasmic flows can be used to 
differentiate between mechanisms.

INTRODUCTION
The cytoskeleton is an ensemble of filaments and molecular motors 
immersed in the cytoplasmic fluid and is involved in cellular pro-
cesses such as cell division and migration. The energy required for 
the rearrangement of cytoskeletal components and organelle trans-
port is typically provided by the force exchange between the cyto-
skeletal filaments—including microtubules (MTs) and actin fibers—
and motor proteins. These interactions are local, that is, they occur 
over the length scales of the molecular motors, which are signifi-
cantly smaller than the length of the filaments. Nevertheless, be-
cause the structures are embedded in the cytoplasmic fluid, their 

motion can instantaneously induce flows on the scale of the cell 
(Shelley, 2016). These nonlocal interactions between the cytoplas-
mic fluid and the structures within (fibers, nuclei, the cell cortex, etc.) 
are referred to as hydrodynamic interactions (HIs). Previous theoreti-
cal and computational studies of the mechanics of cytoskeleton 
mostly ignore HIs, often arguing that HIs are screened in the dense 
network/suspension of filaments (Broedersz and MacKintosh, 2014). 
The purpose of this work is to revisit this assumption and use de-
tailed simulations to demonstrate the importance of HIs in deter-
mining the mechanics of cytoskeletal assemblies.

For this purpose, we developed a versatile and highly efficient 
numerical platform for studying the dynamics of active and flexible 
filaments in cellular assemblies (Nazockdast et  al., 2017). This 
method offers a major improvement from our earlier numerical 
study (Shinar et al., 2011), which did not explicitly model HIs be-
tween MTs and their mechanical flexibility. This is, to our knowledge, 
the first attempt to incorporate many-body HIs between MTs and 
other intracellular bodies with the cytoplasmic fluid while also ac-
counting for the flexibility of MTs, their dynamic instability, and inter-
actions with motor proteins. By accounting for HIs, we can also com-
pute the large-scale cytoplasmic flows generated by the movements 
of MTs and other immersed bodies within the cell.

Monitoring Editor
Alex Mogilner
New York University

Received: Mar 14, 2016
Revised: Feb 27, 2017
Accepted: Mar 16, 2017

This article was published online ahead of print in MBoC in Press (http://www 
.molbiolcell.org/cgi/doi/10.1091/mbc.E16-02-0108) on March 22, 2017.
*Address correspondence to: Ehssan Nazockdast (enazockdast@simonsfoundation 
.org), Michael Shelley (mshelley@simonsfoundation.org).

© 2017 Nazockdast et al. This article is distributed by The American Society for 
Cell Biology under license from the author(s). Two months after publication it 
is available to the public under an Attribution–Noncommercial–Share Alike 3.0 
Unported Creative Commons License (http://creativecommons.org/licenses/by 
-nc-sa/3.0).
“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of 
the Cell®” are registered trademarks of The American Society for Cell Biology.

Abbreviations used: AP, anterior–posterior; HIs, hydrodynamic interactions; MTs, 
microtubules; PNC, pronuclear complex.

Ehssan Nazockdasta,b,*, Abtin Rahimianb, Daniel Needlemanc, and Michael Shelleya,b,*
aCenter for Computational Biology, Flatiron Institute, New York, NY 10010; bCourant Institute of Mathematical 
Sciences, New York University, New York, NY 10012; cSchool of Engineering and Applied Sciences, Harvard University, 
Cambridge, MA 02138

 http://www.molbiolcell.org/content/suppl/2017/03/20/mbc.E16-02-0108v1.DC1
Supplemental Material can be found at: 

http://www.molbiolcell.org/content/suppl/2017/03/20/mbc.E16-02-0108v1.DC1


3262  |  E. Nazockdast et al.	 Molecular Biology of the Cell

complex with other estimates, including those based on the radius 
of the aster formed by the MTs (Reinsch and Gönczy, 1998; Kimura 
and Onami, 2005, 2007), those using a local drag model (Nedelec 
and Foethke, 2007), and our previous study, which ignored the MT 
drag altogether (although not PNC drag or the effect of confine-
ment; Shinar et al., 2011). We find in each case that these estimates 
drastically overestimate or underestimate this drag by a large factor. 
We also find that confinement has a much stronger effect on trans-
lational than on rotational drag, meaning that HIs cannot be lumped 
into a modified viscosity.

We next establish that the cytoplasmic flows induced by HIs can 
be used as a diagnostic tool to differentiate between different active 
mechanisms for pronuclear migration. For this, we instantiate three 
proposed mechanisms for pronuclear migration in C. elegans. 1) The 
cortical pulling model, in which MTs impinging on the cortex are 
pulled on by dynein motors that are attached to the plasma mem-
brane, in particular by association to the protein complex formed by 
the Gα subunits, GPR-1/2, and LIN-5. An asymmetric distribution of 
PAR and LET-99 proteins on the cortex in prophase then produces 
an asymmetric association of dyneins with the protein complex and 
larger pulling forces on the anterior, and so the pronuclear complex 
moves in that direction (Grill et al., 2001; Tsou et al., 2002; Labbé 
et al., 2004; Goulding et al., 2007; Kimura and Onami, 2007; Siller 
and Doe, 2009; McNally, 2013). 2) The cortical pushing model, in 
which the growth of astral MTs against the cell periphery induces 
repulsive forces on MTs that move the complex away from the pe-
riphery and thus opens space for further polymerization (Holy et al., 
1997; Reinsch and Gönczy, 1998; Tran et  al., 2001). Perhaps the 
strongest evidence in support of the cortical pushing mechanism 
being involved in the positioning of the mitotic spindle in C. elegans 
comes from the recent study by Garzon-Coral et al. (2016), in which 
the magnetic tweezers are used to directly measure the forces in-
volved in the positioning of the mitotic spindle. Using these force 
measurements in different molecular and geometrical perturbations, 

As an example, we study pronuclear migration before the first 
cell division of the Caenorhabditis elegans embryo (see the sche-
matic in Figure 1). Proper positioning of the mitotic spindle is indis-
pensable to the successful segregation of chromosomes and to the 
generation of cell diversity in early development (Cowan and 
Hyman, 2004). Before mitosis and after fertilization, the female pro-
nucleus migrate toward (at t = t−1 in the schematic) and meets the 
male pronucleus (t = t0) and its associated astral array of MTs at the 
cell posterior to form the pronuclear complex (PNC). The PNC then 
moves toward and centers at the cell center (t = t1) and rotates 90° 
(t = t2) to align the axis between its two associated centrosomes with 
the cell’s anterior–posterior (AP) axis. The mitotic spindle then forms, 
and the chromatid pairs are pulled toward the opposite sides of the 
cell (t > t2).

HIs arise from several features of PNC migration. Centering and 
rotating the PNC will push and rotate the cytoplasm, as well as the 
astral MT arrays. Hence each structure moves against the backdrop 
of flows produced by the other. Further, because the PNC and its 
associated MT arrays are on the scale of the cell itself, the confine-
ment of the cell will have a very strong effect on the nature of the 
cytoplasmic flows. Finally, as we will show, the mechanisms of force 
transduction that position the PNC can have a qualitative—and in 
principle experimentally measurable—effect on these flows.

To start, we study the flow induced by the motion of the PNC 
and its attached astral MTs, irrespective of the force transduction 
mechanisms. For this, we perform the numerical experiment of pull-
ing the PNC, and its astral MT array, with an externally applied force 
from the posterior to the center of the cell and aligning it with AP 
axis with an externally applied torque. By studying the resulting 
flows, we establish, as a consequence of HIs, that the cytoplasm-
filled astral MTs behave like a porous medium surrounding the PNC, 
where the permeability of the medium decreases with increasing 
number of MTs. To quantify the effect of HIs, we compare the 
computed translational and rotational drag on the PNC/MT-array 

FIGURE 1:  The modeled structural components and dynamics of pronuclear migration in the single-cell C. elegans 
embryo. (a) Structural components. The pronuclear complex—here modeled as a rigid sphere—contains the male (red) 
and female (yellow) pronuclei and is attached to two arrays of MTs (green lines) that polymerize from two centrosomes 
(green bodies). These structures are immersed in the cellular cytoplasm (light blue) and confined within an ellipsoidal 
eggshell. (b) The dynamics of pronuclear migration and positioning. At t = t−1, the female pronucleus moves to the 
posterior to combine with the male pronucleus (t = t0) to form the PNC. This initial period of female nuclear migration is 
not modeled here (Payne et al., 2003). Between t = t0 and t1, the PNC moves anteriorwise to the center while rotating 
into “proper position” with the centrosomal axis along the AP axis (t = t2).
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(∼1/400). The classical Stokes formula estimates the drag force on a 
spherical PNC moving at the same speed and diameter L as 
F LU3πµ= . The ratio of these two drags (MT to PNC) is given by 

e(8/3)ln ( ) 0.251 2 1 ≈− − −ε . Hence, despite having a diameter of only 
24 nm, a single MT has 25% of the PNC’s drag. This can be seen 
more clearly by noting that the drag coefficient has only a weak 
logarithmic dependence, eln ( )1 2 1ε− − − , on the thickness of the MT.

The large drag of a single MT is associated with the large volume 
of fluid that is transported by the motion of that MT. To visualize this 
long-range nature of the induced flows, in Figure 2a we show the 
fluid velocity vectors around a single fiber (thick black line) being 
pulled in the transverse direction and the variations of the magni-
tude of the fluid velocity induced by this motion. The generated 
flow is three dimensional, but for visualization, we present only the 
results in the plane of the fiber (and of the force). The solid white line 
is the contour line that corresponds to U0.20u = , where |u| is the 
magnitude of the induced fluid velocity. We can see that at dis-
tances comparable to the length of the MT, the fluid velocity re-
mains significant. In other words, as long as the separation distance 
between the astral MTs is less than or comparable to their length, as 
it typically is in cytoskeletal assemblies, the motion of an individual 
MT is strongly coupled to the other MTs through the cytoplasmic 
flows.

Cytoplasm-filled astral microtubules behave as a 
porous medium
The mechanical role of astral MTs in all three pronuclear positioning 
mechanisms is to transfer the force applied either on their plus ends 
(by cortical pushing or pulling) or along their lengths (by cytoplasmic 
pulling) to their minus ends anchored in the centrosomes, them-
selves attached to the PNC. This results in active forces and torques 
acting on the PNC. Thus the feature of the cytoplasmic flow that is 
common in all of the cortically based mechanisms—the cortical 
pushing and cortical pulling mechanisms—is the flow generated by 
the motion of the PNC and its anchored astral MTs under a given 

Garzon-Coral et  al. (2016) argue that the cortical pushing forces 
maintain the position of the mitotic spindle during metaphase. 
3) The cytoplasmic pulling model, in which forces are applied by 
cargo-carrying dyneins attached on MTs and walking toward the 
centrosomes (Kimura and Onami, 2007). As a consequence of 
Newton’s third law, the force applied by dynein on MTs is equal and 
opposite to the force required to move the cargo through the cyto-
plasm (Shinar et al., 2011; Longoria and Shubeita, 2013). Because 
longer MTs carry more dyneins and produce larger pulling forces, 
the PNC moves in the direction of longer MTs, that is, anteriorwise.

First, we show that all three mechanisms can center and rotate 
the PNC on a reasonable time scale, and so proper positioning 
alone cannot choose a unique model. However, we demonstrate 
that each mechanism produces its own fingerprint in the generated 
cytoplasmic flows, which can be used to differentiate between 
them. These flow signatures are generic features of each mecha-
nism and do not depend on the details of its biochemical regulation 
and molecular pathways. Specifically, we show that the cytoplasmic 
flow generated in the cortical pulling model is analogous to the flow 
that arises from pushing a porous object with an external force. In 
the cortical pushing model, the cytoplasmic flow is the combination 
of that same driven porous object flow with that produced by MT 
deformations induced by compressive polymerization forces at the 
periphery. Finally, we demonstrate that the flow induced by a cyto-
plasmic pulling model is fundamentally different because it can be 
interpreted as a porous structure that is moved by internal force 
generators, with its early time flows in the class of self-propelled 
puller particles (Saintillan and Shelley, 2013).

Although this study focuses on the pronuclear migration process 
in the C. elegans embryo, the active mechanisms discussed here, 
including the polymerization forces and forces from cortically or cy-
toplasmically bound dyneins, are used in other stages of cell divi-
sion and in other organisms (Howard, 2001). Thus the generic fea-
tures of these mechanical models, including their flow signatures, 
can be useful in identifying or differentiating between force trans-
duction mechanisms in other instances.

RESULTS
A few remarks on the scale of single-microtubule 
drags and flows
The microscopic size of subcellular structures and the large viscosity 
of cytoplasm yield inertial forces of the cytoplasm negligible com-
pared with viscous forces. Assuming for simplicity that the response 
of the cytoplasm is Newtonian, we find the force balance in the fluid 
phase to be governed by the incompressible Stokes equations 
(Happel and Brenner, 1965):

µ u p u0, · 02∇ − ∇ = ∇ = � (1)

where µ is the viscosity of the cytoplasm and u and p are the fluid 
velocity and pressure fields, respectively. Owing to the linearity of 
the Stokes equation, the induced velocity of the PNC is related to 
the net force on it by an instantaneous drag coefficient, γ, of the 
structure composed of the PNC and its attached astral MTs.

An important consequence of being in the Stokesian regime is 
that the drag coefficients of the immersed objects scale with their 
longest dimensions, making the drag of very thin individual MTs 
nonetheless comparable to the drag on the PNC. To see this, con-
sider an MT of length L = 10 µm, which is about the diameter of the 
PNC and on the scale of astral MT lengths, being moved trans-
versely to itself at a constant speed, U. Slender body theory 
(Tornberg and Shelley, 2004) estimates the drag force on the MT as 
F LU e8 / ln 2 1επµ ( )= − − , where ε  is the aspect ratio of the MT 

FIGURE 2:  The 3D cytoplasmic flow induced by moving (a) a single 
MT and (c) a MT array in their transverse direction (x-axis) and with a 
net velocity U = 1, projected in the plane of the motion of the MT 
xz-plane. The arrows show the fluid velocity vectors. The size of the 
arrows and the background color plots correspond to the local 
magnitude of the fluid velocity. (b) The 3D configuration of the MT 
array. The solid white line in a corresponds to the contour with 
velocity magnitude |u| = 0.20U. The dark dashed line in c is the 
contour with |u| = 0.90U, roughly corresponding to the effective 
hydrodynamic size of the MT array.
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when HIs are accounted for, the computed drag of the MT array is 
only 0.66array sphγ γ= , which is ∼10 times smaller than the local drag 
prediction. Of interest, increasing the number of MTs in the array 
to 10 × 10 increases the total drag by <4%, to 0.68array sphγ γ= . 
The computed drag for a 15 × 15 remains almost unchanged from 
that for a 10 × 10 array, as if the entire volume in the MT array was 
filled with MTs. Note that if HIs are ignored, the predicted drag for 
15 × 15 MT-array is 56.2array sphγ γ= , which is ∼85 times larger than 
the computed value; see Table 1.

With that in hand, we now explore the flows generated by trans-
lation and rotation of the PNC and its associated astral MT arrays, 
first by pulling it with a given external force from the cell posterior to 
its center, and then rotating it to proper alignment by applying an 
external torque. The resulting flows are illustrated in Figure 3 using 
NMT = 600 astral MTs. Flows in the absence of astral MTs are also 
shown for comparison. Again, the flow is three dimensional and is 
projected to the plane of the applied force and AP axis to aid visu-
alization. The simulation parameters are given in Table 2. Two main 
translational flow features that are apparent in the presence and the 
absence of MTs are 1) fluid flows in the direction of motion of the 
PNC and along the AP axis, and 2) reversed flows induced by cellu-
lar confinement. Comparing Figure 3a and Figure 3b shows that the 
presence of the MT array reduces the size of the reversing flow zone. 
In other words, the presence of MTs increased the effective hydrody-
namic radius of the PNC (dashed circle). This increase in hydrody-
namic radius is also apparent in rotational motion (Figure 3, c and d) 
by noting that the magnitude of the bulk velocity decays much more 
slowly away from the PNC when the astral MTs are present.

We observed the same trend in the earlier example of MT arrays 
(Figure 2c), which can be described as follows. In pronuclear migra-
tion, the astral MTs act as a comoving porous layer that surrounds 
the PNC and abuts the cell periphery. In particular, the HIs between 
the MTs reduce the convective penetration of fluid into the porous 
layer and creates an effectively larger object moving through (or 
rotating in) the fluid. Note that the relevant dimension of MTs that 

defines the strength of HIs and the fluid flow 
into the astral MTs is the length of the MTs 
and not their thickness. Thus, as we saw in 
the earlier example of the MT array, a small 
number of astral MTs can substantially in-
crease the effective volume of the PNC and 
reduce the permeability of the fluid into the 
volume filled with astral MTs. See Nazock-
dast et  al. (2017) for a more quantitative 
study of the cytoplasm-filled astral MTs be-
having as a porous medium.

Neglecting hydrodynamic interactions 
produces wrong estimates of 
pronuclear migration force magnitudes
To provide a more quantitative analysis of 
the effect of the astral MTs on the dynamics 
of pronuclear migration, we compute the 
translational, F U/T PNCγ = , and rotational, 

F /R PNCγ Ω= , drag coefficients as a func-
tion of the number of MTs. Here UPNC and 
ΩPNC are the computed translational and 
angular velocities of the PNC under external 
force F and torque T, respectively. We con-
sider three different conditions or models. In 
model 1, we neglect all HIs and calculate 
drag on MTs using a local slender-body drag 

external force and/or torque. To understand the effect of HIs be-
tween MTs, we first study the flow induced by a much simpler MT 
assembly: a 5 × 5 microtubule array that moves with velocity U = 1 
along the transverse direction of MTs (x-axis) in free space (Figure 
2b). Figure 2c shows the resulting fluid velocity field and the spatial 
variations of its magnitude in the xz-plane. Again, the fluid flow is 
three dimensional, and the results are projected into the xz-plane for 
visualization. The enclosed surface illustrated by a dashed line is the 
fluid velocity magnitude contour corresponding to |u| = 0.9U. Hence 
those fluid elements within this surface move roughly with the veloc-
ity of the MT array. In other words, HIs between the MTs significantly 
reduce the convective penetration of the fluid between the MTs and 
result in an effective hydrodynamic surface that is much larger than 
the total surface area of all MTs. The microtubule array, therefore, 
can be seen as a porous volume in which the fluid permeability is 
decreased as more MTs are included in the array. The HIs also affect 
the drag on the MT array. As we showed earlier, the drag of a single 
MT moving transversely is roughly 1/4 of a sphere with the same 
diameter as the MT length, 0.25MT sphγ γ= . If HIs are neglected, 
the total drag on the MT array is the summation of the drag on the 
individual MTs: 5 5 0.25 6.25array sph sphγ γ γ= × × = . However, 

Drag on MT array 
without HIs

Drag on MT array 
with HIs

3 × 3 2.25 0.63

5 × 5 6.25 0.66

10 × 10 25 0.68

15 × 15 56.25 0.68

The values are normalized by the drag on a sphere with a diameter equal to the 
length of the MTs in the array.

TABLE 1:  Predicted drag on the MT-array, γarray, in the presence and 
absence of HIs.

FIGURE 3:  The cytoplasmic flows induced by (a) translational and (c) rotational motion of the 
PNC and its attached astral MTs. (b, d) Translational and rotational flows in the absence of 
astral MTs.
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The values are normalized, respectively, by the drag coefficients 
of a rigid spherical PNC, R6T

0
PNCγ πµ=  and R6R

0
PNCγ πµ= . The 

black reference lines at ˆ / 2T T T
0γ γ γ= =  and ˆ / 8R R R

0γ γ γ= =  are es-
timates that assume that PNC drag can be modeled using Stokes’ 
formula with an effective sphere of radius R R2 PNC= , as used by 
Kimura and Onami (2005, 2007) in their modeling of pronuclear ro-
tation and centering.

As expected for model 1, having no HIs between MTs, both drag 
coefficients increase linearly with NMT, showing no saturation. For 
model 2, ˆR T,γ  increases monotonically with NMT, with γ̂ T saturating 
as NMT → ∞ This behavior can be explained through our earlier 
finding that the astral MTs and cytoplasm form a porous medium. As 
the number of MTs is increased, the permeability of the porous me-
dium is decreased, while the effective hydrodynamic dimensions of 
the PNC are increased. In the limit of NMT → ∞ the flow cannot pen-
etrate the porous layer, which fills the cell volume. Because in model 
2 the back flows induced by the cell confinement are neglected, in 
this limit, the drag coefficients asymptote to those of a solid object 
filling the cell and moving in free space.

When confinement-induced back flows are included by account-
ing for HIs with the periphery (model 3), the drag coefficients again 
show monotonic increase with NMT. However, for N 1200MT = , the 
ˆTγ  of model 3 is sixfold larger than that for model 2, severalfold 

smaller than for model 1, and sixfold smaller than for model 3 with 
N 0MT =  (the red star), which corresponds roughly to our previous 
modeling (Shinar et al., 2011) of pronuclear migration in which MT 
drag was not included. Now, as NMT → ∞ , the effective hydrody-
namic dimensions of PNC approaches the size of cell periphery, and 
we expect ˆTγ → ∞ due to the no-slip condition.

Rotational dynamics of the PNC
Figure 4b shows that the rotational drag coefficient qualitatively 
follows the same trend as the translational coefficient, with one key 
difference. Comparing models 2 and model 3 in Figure 4, a and b, 
shows that confinement has a much smaller effect on the dynamics 
of rotation than on translational motion. This is expected because 
rotation of the PNC and the astral MTs involves sliding an effec-
tively larger PNC tangentially to the cell periphery, whereas transla-
tion involves moving the effective surface of the PNC and the astral 

MTs normal to the cell periphery’s surface, 
which induces larger resistance to motion 
(Happel and Brenner, 1965).

We can use the predictions of model 2, 
shown in Figure 4, a and b, to study a more 
fundamental question: can the mixture of 
cytoplasm and astral MTs be modeled as a 
fluid with a simple effective viscosity? If that 
is true, then we expect the ratios of the 
translational drag coefficient to the rota-
tional drag coefficient to be independent of 
the number of MTs i.e., ˆ / ˆ 1Tγ γ = . Our 
model 2 predictions, however, show that 
ˆ / ˆTγ γ  increases from 1 at N 0MT =  to 7 at 

N 1200MT = . This simple example demon-
strates that HIs cannot be coarse grained 
through a single effective viscosity because 
HIs do not have the same dynamical effect 
on rotational and translational motions. 
Instead, our simulations show generally that 
the entire cytoplasm-filled MT array acts as a 
porous medium whose permeability de-
creases with increasing number of MTs, thus 

formula (Tornberg and Shelley, 2004) and drag on the PNC using 
Stokes’ drag formula. This approximation closely follows the Brown-
ian dynamics simulation techniques used for modeling cellular as-
semblies, such as Cytosim (Nedelec and Foethke, 2007). In model 2, 
we include HIs among the MTs and with the PNC but neglect the 
backflow generated by the cell periphery through the no-slip 
boundary condition. That is, in model 2, cytoplasm flows in and out 
of the cell periphery without impedance. The confining presence of 
the cell wall is partially maintained by having MTs depolymerize 
upon reaching it. In model 3, we include all HIs—in particular, those 
that arise from applying the no-slip boundary condition at the pe-
riphery. A comparison between models 2 and 3 model allows us to 
separate the effect of confinement flows induced by the cell wall 
from those induced by the aster.

Figure 4 shows the variation of computed translational and 
rotational drag coefficients with the number of MTs for models 1–3. 

Parameter
Value used in 
simulations

MT growth velocity (Vg
0) 0.12 µ·s–1

MT shrinkage velocity (Vs) 0.288 µ·s–1

MT rate of catastrophe (fcat
0 ) 0.014 µ·s–1

MT rate of rescue (fres) 0.014 µ·s–1

MT bending modulus (E) 10 pN·m2

MT stall force for polymerization reaction (FS
P ) 4.4 pN

Cytoplasmic dynein’s stall force (Fstall) 1 pN

Viscosity of the cytoplasm (µ) 1 pa·s

Long axis of the cell 50 µm

Short axis of the cell 30 µm

Radius of the pronuclear complex (aPNC) 5 µm

These values are taken from Table 1 of Kimura and Onami (2005). The refer-
ences related to each measurement are given in that article.

TABLE 2:  The biophysical parameters used in our simulations. 

FIGURE 4:  (a) Normalized translational, ˆ /T T T
0γ γ γ= , and rotational, ˆ /R R R

0 0γ γ γ= , drag 
coefficients vs. number of MTs, where R6T

0
PNCγ πµ=  and R8R

0
PNC
3γ πµ=  are the translational and 

rotation drag coefficients, respectively, of a rigid spherical PNC in the absence of MTs. The solid 
straight lines correspond to the estimates used in Kimura and Onami (2005, 2007); ◊, predictions 
of model 1, in which only the local drag coefficient of individual MTs is accounted for, as used by 
Cytosim (Nedelec and Foethke, 2007); , predictions of model 2, in which HIs with the cell 
cortex (hydrodynamic confinement) is neglected; *, our previous study, which neglects the drag 
on the MTs (Shinar et al., 2011); , simulation result of model 1, which fully accounts for all HIs. 
The solid lines going through the prediction of model 2 are linear fits to the data. These 
equations are Nˆ 1 0.12T MTγ = +  and Nˆ 1 0.17R MTγ = +  for translational and rotational drag, 
respectively.
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observations of Tsou et al. (2002). In this model, pulling forces on 
astral MTs are generated by the asymmetric attachment of astral 
MTs to cortically bound dyneins, whose activation probability is in-
homogeneously distributed along the posterior cortex, with the 
greatest probability of attachment at the posterior pole and the 
least to the immediate posterior of the midplane. Attached MTs are 
pulled upon, and simultaneously depolymerized, at the cortex; see 
the Supplemental Materials for details. A snapshot of the simulation 
at long times is shown in Figure 5b, left. It demonstrates that this 
mechanism leads to centering and rotation to the proper position. 
In this simulation, PNC translation and rotation are in temporal reg-
ister, and proper position is achieved on a reasonable time scale 
(Figure 5c, left). Because the cortically bound force generators in 
this model put the MTs under an extensional load, MT deformations 
are small and remain relatively straight (Figure 5b, left). For the 
parameters used in this simulation (motor attachment distribution 
and number density, MT attachment and detachment rates, etc.), 

giving an increased effective size of the PNC in response to an ap-
plied force (at least in the absence of force generators within the 
astral MT array producing active flows). The different scaling of 
translational and rotational drag coefficients with the effective radius 
of the PNC (γ T scales with R, whereas γ R scales with R3) causes 

Rˆ / ˆ ~R T
2γ γ  to increase, as the effective radius of the PNC and its 

astral MTs increases with the number of MTs.

Three mechanisms of pronuclear migration yield proper 
positioning of the pronuclear complex
We now investigate the mechanics of pronuclear migration and 
positioning using three proposed positioning mechanisms in C. 
elegans embryo; namely the cortical pulling, cortical pushing, and 
cytoplasmic pulling models. To start, within our framework, we 
instantiated a cortical pulling model that Kimura and Onami (2007) 
developed for their study of pronuclear migration. Figure 5a shows 
a schematic of this model, which was motivated by experimental 

FIGURE 5:  (a) The force transduction mechanisms. Left, cortical pulling model, in which the blue, yellow and red strips 
on the cortex correspond to the lowest, average, and highest density, respectively, of the cortical force generators. See 
the Supplemental Materials for details. Middle, the cortical pushing model. The larger number of MTs polymerizing 
against the cortex on the posterior side and their shorter lengths (corresponding to larger bending forces) result in 
larger pushing forces on the posterior pole (compared with the anterior) and pronuclear migration from posterior to the 
center of the cell. Right, the length-dependent cytoplasmic pulling mechanism, in which cargo-carrying dynein motors 
apply pulling forces on the astral MTs. Longer MTs have more dyneins attached to them, which result in pronuclear 
migration toward the longest MT, that is, from posterior to the center of the cell. (b) Long-time 3D snapshots of the 
simulations in the three mechanisms (Supplemental Movies S1–S3). The fibers are color coded with respect to the local 
tension; red, blue, and white denote compressional, extensional, and no forces, respectively. In the cortical and 
cytoplasmic pulling models, the MTs are under extensile forces and thus remain straight; in the cortical pushing 
simulations, the MTs are buckled due to the compressional forces from their polymerization against the cortex. (c) 
Variations of the PNC position and angle between the intercentrosomal axis and the AP axis vs. time.
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(Shinar et al., 2011), in which minus end–directed cargo-carrying dy-
neins walk on MTs and thus apply a pulling force on them toward 
their plus end. Applying proper force balance (Shinar et al., 2011), 
the cargo exerts an equal and opposite force on the fluid. If dyneins 
are uniformly distributed along the MTs, as is assumed here, the 
PNC moves in the direction of the longest MTs, as these contribute 
the greatest pulling forces; see the Supplemental Materials for de-
tails. As shown in Figure 5c, right, this model can yield both center-
ing and rotation on a time-scale comparable to experimental obser-
vations (Kimura and Onami, 2005). Similarly to the cortical pulling 
model, the MTs are under extension, and their deformations are 
small, which is evident in the long-time three-dimensional (3D) snap-
shot of the simulation in Figure 5b, right.

Cytoplasmic flows during pronuclear migration
Our simulation results thus far show that all three positioning mech-
anisms can produce the expected alignment and position of the 
pronuclear complex within a reasonable time scale and choice of 
biophysical parameters. We now discuss their induced cytoplasmic 
flows and the generic features specific to each. Our motivation is 
that different mechanisms of force transduction will exert different 
forces on MTs and hence should be associated with generically dif-
ferent cytoplasmic flows. To demonstrate these differences, we start 
by studying the flows induced by a single MT growing against a 
barrier and by a single cargo-carrying dynein motor walking along a 
MT. These are the simplest representations of cortical pushing and 
cytoplasmic pulling flows, respectively. These flows are shown in 
Figure 6. The flow induced by a MT being pulled by cortical force 
generators—the simplest model of the cortical pulling mecha-
nism—is the same as in Figure 6a but in the opposite direction, and 
thus is not presented here.

General physical principles underlie the gross cytoplasmic flow 
structures that we observe for the different models. In both cortically 
based models, the MTs are pushing or being pulled against a fixed 
boundary (cell periphery) while an opposite force is applied from the 
cell boundary or the cortically bound dynein motors to the MTs. In 
such a case, because the force on the outer boundary does not 
generate any internal flows, the cytoplasmic flows are associated 
with the motion of the MT under an external force within the cellular 
confinement. In the case of the cortical pushing mechanism, be-
cause the MT plus end is fixed at the cortex, the polymerization 
forces push the MT away from the cortex to open space for adding 

we find that the PNC robustly finds the proper position. These cho-
sen parameters were physiologically reasonable but also narrowly 
constrained, as other, seemingly reasonable choices of these pa-
rameters can lead to lack of centering. More details are given in the 
Supplemental Materials; the biophysical parameters corresponding 
to the figures are given in Table 2.

Next we consider a variation of the cortical pushing model. In 
this model, we constrain the position of the MT plus ends, which 
reach and polymerize at the cortex to remain fixed (and hinged) at 
the cortex as long as they are in growing state (see the Supplemen-
tal Materials). In an idealized system in which the PNC is pushed by 
an up–down symmetric set of astral MTs, the intercentrosomal axis 
would remain orthogonal to the AP axis throughout the centering 
process (having started that way). However, a combination of de-
pendence of polymerization forces on MT length (shorter MTs are 
harder to deform, resulting in larger polymerization forces) and the 
elongated shape of the cell periphery makes this orientation me-
chanically unstable and susceptible to the fluctuations that MT dy-
namic instability can provide. Once seeded, this “torque instability” 
produces a self-reinforcing, rotating torque on the PNC, moving it 
toward the proper position, which is a mechanically stable equilib-
rium (see the Supplemental Materials).

As shown in Figure 5c, middle, this model results in proper cen-
tering and rotation of the PNC on a reasonable time scale. In addi-
tion, Figure 5b, middle, shows that for this particular instantiation of 
the cortical pushing model, the MTs are substantially buckled near 
the cortex. We also considered another variation of cortical pushing 
in which, rather than fixing the plus ends of MTs, pushing forces are 
applied in the normal direction to the cell boundary (pointing in-
ward) so that MT plus ends cannot penetrate the boundary. MTs are 
nonetheless allowed to grow or slide freely tangentially. Our simula-
tions show that, although the PNC properly centers in this model, it 
fails to rotate the PNC to the proper alignment with the AP axis; this 
variation of the model is discussed in detail in the Supplemental 
Materials.

Finally, Figure 5a, right, shows a schematic of the cytoplasmic 
pulling model. This model was initially proposed to explain observa-
tions in newly fertilized sand-dollar eggs (Hamaguchi and Hiramoto, 
1986). Later, via modeling and experimental study, this was pro-
posed as a mechanism for pronuclear positioning in the C. elegans 
embryo (Kimura and Onami, 2005; Kimura and Kimura, 2011). This 
model was studied in our earlier work on pronuclear migration 

FIGURE 6:  (a) Flow induced by MT growing against a barrier and (b) flow induced by a cargo-carrying dynein walking 
on a MT as simple representations of the cortical pushing and cytoplasmic pulling mechanisms. The induced flows are all 
three dimensional and are presented only in the plane of the MT and the direction of its motion for visualization. The 
solid curved lines are the flow streamlines. The arrows tangent to the streamlines are the velocity vectors. The size of 
the arrows and the background contour plot correspond to the magnitude of fluid velocity. The vectors with only an 
arrowhead in b correspond to nearly zero fluid velocity, as evident from the contour plot. The maximum and minimum in 
the color bar in b correspond to the velocity of the cargo and the MT in the x-direction, respectively.
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cytoplasmic flows similar to that of a porous 
body towed through a confined space. 
Figure 7a, top, shows a snapshot of the cy-
toplasmic velocity field at early times, which, 
at this instant, is dominated by translation 
and bears a striking resemblance to that 
shown in Figure 3a, where the PNC/MT ar-
ray is translated by an external force. At an 
intermediate time, the cytoplasmic flow has 
become primarily rotational (Figure 7a, mid-
dle). In these conditions, the flow begins to 
resemble that seen in Figure 3c, where the 
centered PNC/MT array is rotated by an ex-
ternal torque. At late times (e.g., Figure 7a, 
bottom), the cytoplasmic flows are weak 
and arise from fluctuations in PNC position 
due to the stochastic attachment and de-
tachment of MTs from the cortex. As the 
MTs remain straight under their extensive 
loading from cortical force generators, the 
cytoplasmic velocity fields arise almost en-
tirely from the translations and rotations of 
the PNC/MT array complex.

For the cortical pushing model shown 
in Figure 7b, the cytoplasmic flow is a com-
bination of the flows generated by the mo-
tion of the PNC/MT-array complex (similar 
to the flow shown in Figure 3a) and flows 
due to MT deformations near the periph-
ery. After the MTs reach the cortex and 
continue polymerizing, they are pushed 
away from the boundaries with the same 
speed as they grow. Thus the generated 
flows near the cortex scale with the plus-

end polymerization rate and are primarily in the direction oppo-
site the polymerization direction (Figure 6a). (The generated flows 
near the cortex can be quite involved: the growth of the buckling 
amplitude, which is orthogonal to the direction of MTs, also con-
tributes to the flow, as does the relaxation of the MTs switching to 
catastrophe.) For the range of biophysical parameters used in our 
simulations, see Table 2. The flow induced by MT deformation 
near the periphery is comparable in magnitude to that induced by 
the PNC motion for most of the migration process. Figure 7b, 
middle and bottom, shows that the same flow patterns are also 
observed near the periphery after completion of PNC centering 
and rotation.

Finally, we discuss the flows in the cytoplasmic pulling mecha-
nism. Unlike the cortical pushing and pulling models, which use 
the cell periphery as the mechanical substrate against which to 
exert forces through MTs, the force substrate is now the cyto-
plasm in which the cargoes are immersed. Hence the generated 
flow arises from two sources: 1) the flow induced by the motion of 
the PNC/MT-array, and 2) the flow generated by the motion of 
cargoes toward the minus ends of MTs. Figure 7c shows that the 
cytoplasmic flows thus produced are fundamentally different than 
those observed in the two previous models. The key flow signa-
ture that is present in all stages of migration is that, unlike the 
cortical pushing and pulling mechanisms, the cytoplasmic flow in 
the anterior is in the opposite direction of the motion of the PNC 
and is along the direction of cargo transport toward the centro-
somes in the volume occupied by the astral MTs. The strength of 
the flow in the cytoplasmic pulling model is determined by the 

the newly formed microtubule materials. This outward flux creates a 
flow by dragging cytoplasm from the cell periphery into the cell 
volume (Figure 6a). In the case of the cortical pulling mechanism, 
the applied force and the resulting cytoplasmic flows are in the op-
posite direction.

In the cytoplasmic pulling model, the pulling force applied on 
the MTs by a dynein motor is balanced by the equal and opposite 
force applied by that motor’s cargo onto the cytoplasm through 
which it is being dragged. Unlike the cortical models, in which the 
applied forces at the cell boundary do not induce internal flows, the 
force applied by the dynein motors to the cargo generates a flow in 
the opposite direction of the MT motion. The flow is then a combi-
nation of the flow induced by the motion of the MT and the flow 
induced by the cargo transport. Because equal and opposite forces 
are applied to the cargo and the MT, the flow roughly corresponds 
to the flow induced by a force dipole (Happel and Brenner, 1965). 
Figure 6b shows the 3D velocity streamlines and spatial variations of 
velocity magnitude induced by a single dynein motor carrying a 
0.1-µm spherical cargo along a 2-µm-long microtubule. The results 
are projected to the plane of motion of the MT. Note that the flow 
strength in this model decays much faster than the flow induced by 
growing/shrinking MTs against barriers and becomes negligible at 
distances less than the length of the MT.

With these simple examples in hand, we now discuss the com-
puted cytoplasmic flows during pronuclear migration in complete 
instantiations of the three mechanisms. We start with the cortical 
pulling mechanism. Because the MTs are hardly deformed in this 
model, the motion of the entire PNC/MT-array complex generates 

FIGURE 7:  Snapshots of cytoplasmic flows at different stages of pronuclear migration: the (a) 
cortical pulling, (b) cortical pushing, and (c) cytoplasmic pulling mechanisms. Numbers denote 
time in minutes:seconds after the nuclei meeting. The results are projected onto the xy-plane to 
aid visualization, where the AP axis is the x-axis and the intercentrosomal axis is initially aligned 
with the y-axis. Note that both the shape of the MTs and the flow are defined in three 
dimensions. The faint colors of the velocity vectors in the bottom panel of the cortical pulling 
flows and the middle and bottom panels of the cortical pushing flows represent the “weakness” 
of the cytoplasmic flows in those instances compared to the flow strength at the initial stages of 
the PNC migration. In contrast, the flows in the cytoplasmic pulling model remain “strong” 
throughout the entire migration process.
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the findings of this study are quite generic and extendable to other 
cytoskeletal assemblies.

First, through direct simulation, we showed that the most funda-
mental effect of HIs in pronuclear migration is that the astral MTs 
array behaves effectively as a porous medium; see Nazockdast 
et al. (2017) for a more quantitative study. Increasing the number of 
astral MTs reduces the permeability of the fluid, resulting in larger 
hydrodynamic dimensions of the PNC and a larger net force/torque 
associated with moving the PNC to the proper position/orientation. 
We showed that previous approximations of the PNC drag coeffi-
cient, which either ignore HIs or include them partially, overpredict 
or underpredict active forces by a large factor. By comparing the 
translational and rotational motion of the PNC and its astral MTs, 
we showed that the effect of astral MTs cannot be simply reduced 
to an effective viscosity. This observation has important conse-
quences that go beyond the pronuclear migration problem. For 
example, consider measuring the effective viscosity of the cell’s in-
terior using active microrheology, in which a probe is externally 
driven through the cytoplasm using magnetic forces and/or optical 
tweezers with a given force or torque (Wirtz, 2009). The measured 
translational or angular velocity of the probe is then used to com-
pute the effective viscosity. For a spherical probe, the viscosity is 
computed using µ = F/(6πUa) or µ = F/(6πΩa3) for cases of applying 
a fixed external force F or torque L, respectively. If the cellular inte-
rior acts as a porous medium—because the hydrodynamic effect of 
the astral MTs cannot be modeled with an effective viscosity—the 
computed viscosities from these two models (applying a force vs. a 
torque) may yield viscosities that differ considerably. Instead, if the 
astral MTs were not attached to the PNC and were freely suspended 
in the cytoplasm, these two experiments would be expected to 
give similar results for the viscosity.

We studied the dynamics of PNC/MT-array positioning using 
simple instantiations of the cortical pulling, cortical pushing, and 
cytoplasmic pulling mechanisms. Our results show that all three 
mechanisms can center and rotate the PNC within reasonable times 
and range of biophysical parameters. Thus proper positioning alone 
cannot identify the main mechanism of PNC migration. We propose 
that the structure of cytoplasmic flows may select between the dif-
ferent possible active mechanisms involved in cellular processes 
such as pronuclear migration. We show, through simulation, that 
each of these force transduction mechanisms leaves its specific fin-
gerprint in the generated cytoplasmic flows; these features are di-
rectly related to how the force is transferred from molecular motors 
and cell boundaries to the MTs. Specifically, we show that when the 
active forces are applied from an immobile substrate to the MTs, 
such as in the cortical pushing and pulling mechanisms, the basic 
feature of the cytoplasmic flows is that of the flow generated by a 
point force (Stokeslet) in a confined geometry. In the cytoplasmic 
pulling mechanism, in which the substrate is mobile (cargo-carrying 
dynein), the generated flow is the combination of the flow gener-
ated by the average motion of the PNC/astral MT and flow induced 
by cargo transport, which resembles the flows induced by a force 
dipole.

These aspects of flow signatures are generic features of each ac-
tive mechanism and do not depend on details such as the value of 
the shear viscosity of the cytoplasm, the MT bending rigidity, the 
stall force of the molecular motors, or their force–velocity relation-
ship. Thus they can be used to study the possible contributions of 
these differing force transduction mechanisms in other stages of cell 
division and possibly other cytoskeletal structures. We are following 
up on these ideas by directly measuring the cytoplasmic flows by 
particle-tracking methods.

total active force applied by the dynein motors, which in our 
model scales with the total length of the MTs. Consequently the 
strength of flow throughout and after the migration process does 
not change significantly. On the other hand, the velocity of the 
PNC monotonically decreases as it approaches the center of the 
cell. Hence, as we see in Figure 7c, middle and bottom, after 
centering, the strength of cytoplasmic flows is much stronger 
than the small fluctuating velocity of the PNC. This leads us to 
another key difference between the cytoplasmic pulling and cor-
tically based models: in the cytoplasmic pulling model, the fluid 
velocity magnitude is much larger than that of velocity fluctua-
tions of the PNC after centering, whereas for the other mecha-
nisms, the fluid velocity is similar in magnitude to that of the PNC 
velocity fluctuations.

The flows arising from cytoplasmic pulling resemble those 
generated by “puller” microswimmers (Saintillan and Shelley, 
2013) such as Chlamydomonas reinhardtii (Drescher et al., 2010). 
The reason lies in the ensemble behavior of the PNC/MT array 
and the immersed dynein motors. As shown in Figure 7a, for any 
force applied by the attached dynein motors on the MTs, there is 
an equal and opposite force applied by the cargoes to the cyto-
plasmic fluid. Thus, whereas the force on the PNC/MT array is not 
zero, the net force on the PNC/MT array and the cytoplasmic 
fluid is identically zero. In particular, the motion of each cargo on 
the MT array generates a force dipole described by a tensor 
whose symmetric part gives the net stress on the system, which, 
unlike the net force, is not zero. For straight MTs and a uniform 
distribution of the motors, the net stress tensor induced by motor 
activity is

L p r r p f1
2 i i i i ii

N
motor motor1∑σ ( )= +

= � (2)

where Li and pi are the length and unit tangent vector of the ith 
MT, respectively, and ri, taken as orthogonal to pi, gives the rela-
tive position of the cargo with respect to its attachment point on 
the ith MT. The antisymmetric part of the force dipole determines 
the net torque on the system, which is also zero. Zero net force 
and torque and a finite active stress are the two hallmarks of ac-
tive, self-propelled particles (Saintillan and Shelley, 2013). As a 
result, the flow far from such particles is that generated by the 
symmetric part of a force dipole. Whereas in our system the size of 
the “active particle” —the PNC/MT-array—is similar to the scale 
of its confinement, the flow still closely resembles that generated 
by a puller particle in an open flow (see Figure 5 of Saintillan and 
Shelley, 2013).

The cortically based models both generate grossly similar cyto-
plasmic flows (albeit different MT deformations) because they share 
the feature that the force is transduced to the PNC by MT pushing/
pulling on/from an immobile cell boundary. In these conditions, the 
net force on the PNC/MT arrays and the cytoplasm is nonzero. The 
cytoplasmic flows then resemble those generated by a force mono-
pole, or a Stokeslet, within a confinement.

DISCUSSION
The motion of cytoskeletal components and payloads within the cy-
toplasm can generate global flows and long-range HIs between 
them. Most previous studies related to the mechanics of cytoskele-
ton ignore the effect of HIs; see Shinar et al. (2011) for an exception. 
In this study, we used detailed dynamic simulations that explicitly 
account for many-body HIs to demonstrate several important con-
sequences of HIs in the mechanics of the pronuclear migration 
stage of the first cell division in C. elegans embryo. Nevertheless, 
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1 Numerical methods

In this section we give a brief description of the highly efficient computational method used to simulate
the hydrodynamic interactions (through the cytoplasm) of MTs with each other, the pronuclear complex,
and the cell cortex. This method also accounts stably for MT flexibility, their dynamic instability, and
their interactions with molecular motors. Further details of the numerical method is given in [Nazockdast
et al., 2017]. For cellular flows inertial effects can be safely ignored. While we assume the cytoplasm is
assumed Newtonian [Daniels et al., 2006], the mechanical responses of the overall system of cytoplasm
and cytoskeleton is in general non-Newtonian. The flow of a Newtonian cytoplasm is described by the
incompressible Stokes equation:

µ∆u−∇p = 0 & ∇ · u = 0, (1)

where µ is the bulk viscosity, u is the (cytoplasmic) fluid velocity, and p is the pressure. We represent so-
lutions to the Stokes equations using a boundary integral formulation [Pozrikidis, 1992], where the fluid
velocity is represented as a distribution of fundamental solutions to the Stokes equations on all immersed
and bounding surfaces. The densities of these distributions is determined by the application of boundary
conditions, such as the no-slip condition (surface velocity is equal to fluid velocity). A boundary integral
formulation reduces the computational problem from 3D (solving the Stokes equations in the fluid vol-
ume) to the 2D problem of solving coupled singular integral equations on all the immersed and bounding
surfaces. In formulating the contributions from the bounding surface SE (the cortex) and any surfaces of
internal bodies SI (here, only the PNC), we use a distribution of stresslets, a representation due to [Power &
Miranda, 1987] which generates well-conditioned 2nd-kind Fredholm integral equations. The contributions
due to the motion of MTs are be treated specially due to their slenderness, as their surface integrals can be
reduced, through asymptotics, to integrals of Stokeslets along their center-lines.

To be specific, consider N MTs attached to the pronuclear complex, with the entire structure contained
within the cell cortex. The nth MT has center-line position Xn(s, t), where s is arclength measured from the
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point of attachment and 0 ≤ s ≤ Ln with Ln the MT’s length. Then, the fluid velocity at a point x within the
cytoplasm can be given as

u(x) =uMT(x) + uE(x) + uI(x) where (2a)

uMT(x) =
N

∑
m=1

uMT,m(x) =
N

∑
m=1

∫ Lm

0
G(x− Xm(s′)) · fm(s′)ds′ (2b)

uE(x) =
∫

SE

qE(x′) · T(x− x′) · n(x′)dSx′ (2c)

uI(x) =
∫

SI

qI(x′) · T(x− x′) · n(x′)dSx′ + G(x− xc) · Fext
I + R(x− xc) · Lext

I (2d)

That is, the velocity is expressed as a sum of three sets of integrals, over MTs centerlines, the external
boundary (SE; the cortex), and internal boundaries (SI ; the pronuclear complex). Here G(r) = (I +
r̂r̂)/(8πµ|r|), with r̂ = r/|r|, is the single-layer fundamental solution for the Stokes equations (the Stokeslet,
a 2nd rank tensor), µ is the fluid viscosity, and fm is the force/length that the mth MT exerts upon the fluid;
T = −3r̂r̂r̂/(4πµ|r|2) is the double-layer fundamental solution (the stresslet, a 3rd rank tensor), and qE,I
are vector densities to be determined [Power & Miranda, 1987]. Note that a distribution of stresslets on
the surface of a body (immersed in a Stokesian fluid) produces identically zero net force and/or torque
upon that body. Thus, in Eq. (2c), to account correctly for any applied forces and torques, explicit Stokeslet
and Rotlet singularities are included inside the body. In particular, Fext and Lext are the external force and
torque, respectively, exerted upon the PNC (SI) where R(r) · L = L× r̂/(8πµ|r|2) is the Rotlet fundamental
solution to the Stokes equations, and xc is any point interior to SI . Finally, the vector n is the unit outer
normal to the SE and SI surfaces.

Taking the two limits x → SI or SE generates integral equations for the densities qEorI , respectively.
Requiring that the outer boundary SE be stationary, or u(x) = 0 for x ∈ SE, generates the limiting integral
equation

uMT(x) + uI(x)− 4πqE(x) +
∫

E
qE(x′) · T(x′ − x) · n̂(x′)dSx′ = 0, (3)

Likewise, the limiting integral equation for x ∈ SI is

uMT(x) + uE(x) + 4πqI(x)

+
∫

I
qI(x) · T(x′ − x) · n̂(x)dSx′ + G(x− xc) · Fext

I + R(x− xc) · Lext
I = UIΩI × (x− xc) , (4)

where U and Ω are the translational and angular velocity of the immersed body. In both Eqs. (3) & (4), the
singular surface integrals are interpreted in the principal value sense.

One cannot take a limit of Eq. (2b) as x approaches a point on an MT. The resulting integral is undefined
and the problem is instead treated through careful asymptotics [Keller & Rubinow, 1976; Johnson, 1980;
Götz, 2000]. In this case it has been established that the velocity of the nth MT center-line, Un = ∂Xn/∂t, is
given to leading order by

Un =
N

∑
m=1

uMT,m 6=n(Xn) + uE(Xn) + uI(Xn) + (ln(ε−2e−1)/8πµ) (I + Xn,sXn,s) · fn(s), (5)

where we have assumed that arclength parameter is also a material parameter of the MT fiber which is a
consequence of MT inextensibility. The subscript s on Xn,s denotes a partial derivative with respect to s
(hence, Xn,s is the MT tangent vector), and ε = a/Ln is the MT aspect ratio. Here, we have neglected the
velocity contribution from nonlocal self interactions of different segments of each individual fibers, which
arise as a result of having curvature and non-uniform distribution of forces along the fiber. This interaction
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contributes to the velocity of the fiber to O(1) compared with the leading ln(ε−2e−1) term. Our numerical
experiments [Nazockdast et al., 2017] show that including these nonlocal self interactions has negligible
effect on the overall dynamics.

The force applied from an MT to the fluid, f , is balanced with the hydrodynamic force from the fluid
to the MT and is the sum of internal elastic forces and the forces applied by molecular motors or through
interactions with the boundaries. External forces can be applied either at the MT ends (through boundary
conditions), or along the length of the MT where f = felastic + fmotor. The elastic forces are related to MT
conformation through Euler-Bernouli beam theory by the constitutive relation f elastic = −EXssss + (TXs)s,
with E the MT flexural modulus, and T is the MT’s axial tension. The term −EXssss is the bending force
per unit length and (Txs)s is tension force per unit length. The tension T is determined by the condition
of MT inextensibility [Tornberg & Shelley, 2004]. This constraint gives an auxiliary equation for tension
by imposing Us · Xs = 0 which follows from differentiating the identity Xs · Xs = 1 and interchanging
s and t derivatives; that these derivatives can be interchanged follows from assuming s gives a material
parametrization of the MT position.

One method for modeling the (de)polymerization process is to discretely remove/add finite length seg-
ments from/to MTs in time. Our numerical experiments based on this approach shows that, to avoid
numerical instabilities, extremely small time steps are needed. To overcome this limitation, we instead in-
troduce a new parameterization variable, α, of the MT centerline satisfying α = s/L(t) so that 0 ≤ α ≤ 1,
and L then appears explicitly in the reformulated equations. This removes the numerical instability and
allows us to take much larger time-steps, now dictated by considerations of accuracy rather than numerical
stability.

To fully determine the dynamics of the MTs and the PNC requires specifying f motor which depends on
the particular model of motor-protein type and activity. Three different models of PNC migration, result-
ing in different forms for f motor are discussed in the next sections. Once f motor is specified, Eqs. (4)-(5)
are discretized using pseudo-spectral methods in space and an explicit/implicit backward time-stepping
scheme. The latter treats the bending forces and tension implicitly (among other elements), which removes
the high-order stability stiffness constraints from elasticity, so that the time-step is chosen by the require-
ments of accuracy rather than numerical stability Nazockdast et al. [2017]. This results in a linear system of
equations to be solved at each time-step. For this, we use GMRES [Saad & Schultz, 1986] with special pur-
pose preconditioners [Nazockdast et al., 2017]. If each fiber is discretized by M points, direct computation
of the HIs between the N MTs requires (N×M)2 operations which is very demanding forO(1000) or more
MTs. We instead use a Kernel-Independent [Ying et al., 2004] implementation of the Fast Multipole Method
(FMM) [Greengard & Rokhlin, 1987] to speed up the computation HIs, reducing the cost to O(N ×M). All
the computations, including the FMM, are parallelized and scaleable.

2 Biophysical models for positioning and their properties

2.1 Cortical pushing

In the cortical pushing model, positioning is achieved by repulsive forces applied from the cortex when a
growing MT reaches the cell boundary. The magnitude of the force is such that it stops the growth reaction
process, or provides space for growth through moving the PNC away from the cortex or by deforming the
growing fiber. In vitro measurements suggest that the stall force for growth process of the MTs is FS

P ≈ 4.4
pN [van Doorn et al., 2000]. If we take the average length of the astral MTs reaching the cortex throughout
the centering process to be approximately 15 µm –assuming that the MTs rarely go through catastrophe
prior to reaching the cell cortex– the force threshold for a bucking instability is FB = π2E/L2 ≈ 0.4 pN �
4.4 pN. Thus, in most interactions of MTs with cortex, MTs bend or buckle and continue the growth process
rather than completely stalling it. Hence, larger forces are applied to the side of PNC with shorter MTs
(larger buckling forces) resulting in the centering of the PNC.
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No—SlidingFree—Sliding

Figure 1: A schematic of the no-sliding cortical pushing model, where the plus end of the growing MTs remain attached to
the cortex with a spring force.

We consider two variations of this model namely the free-sliding and no-sliding sub-models. The main
text only focuses on the predictions of the no-sliding model, as only this model gives proper alignment
of the centrosomal axis with AP axis. The free-sliding model and its predictions are described only in the
Supplementary Materials and in section §3.

In the no-sliding model, we constrain the sliding and growth along the boundaries and assume that the
growing plus-ends of MTs remain fixed on the cortex as long as they are growing. We implement this
constraint by a linear spring force at the attachment point: FM = −K (X − Xatt), where K is the spring
constant (set to 10 pNµm−1), and where Xatt is the pinned plus-end position of the MT set by having
reached a distance closer than ∆r? = 0.5 µm to the cortex. This is shown schematically in Fig. 1. At
0.5 µm of displacement, this choice of K results in 5 pN of force, which is bigger than the stall force for
polymerization reaction (FP

S = 4.4 pN). Thus, the MTs will stop growing prior to reaching to the cell
periphery. In both variations of the model, we use the empirical model given by Dogterom & Yurke [1997]
based on their in vitro experimental studies, and relate the rate of growth to the applied end-force by Vg =

A exp
(
−C(FM · xs)/FS

P
)
− B with A = 1.13 µm min−1, B = −0.08 µm min−1, and C = 2.33.

The in vitro measurements of Janson et al. [2003] suggest that the turnover time of MTs in contact with
cortex is proportional to their growth velocity. The measured rates of catastrophe in [Janson et al., 2003] are
however generally smaller than 0.1 s−1 while in vivo observations suggest 0.5-1 s−1 [McNally, 2013]. We use
these observations and set the catastrophe rate to

fcat = max( f 0
cat

V0
g

Vg
, fmin) (6)

where f 0
cat is the rate of catastrophe under no compressive load. We include fmin as the minimum allowed

average rate of catastrophe in the model to incorporate the in vivo observations. We have changed this value
from 0.1-0.33 s−1 to study its effect on the dynamics of migration, with the results presented in section §5.
Finally, variations of ∆r? in the free-sliding model and spring stiffness, K, in the no-sliding model did not
change the time-scales of PNC migration.

2.2 Cortical Pulling

Our model for cortical pulling on the PNC is based on the asymmetric attachment of MTs to cortically
bound dyneins on the anterior and posterior sides of the cell. It closely follows the model prosed by Kimura
& Onami [2007], and is motivated by experiments of Tsou et al. [2002] showing that LET-99 protein is
highly enriched on the posterior side of the cortex in regions close to the mid-plane. LET-99 prevents MTs
from attaching to cortically bound dyneins, and results in asymmetric pulling forces and a net force on
the PNC towards the anterior. Following Kimura & Onami [2007], we assume that the rate of MT capture
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Figure 2: A schematic of the cortical pulling model model; the stars represent the active cortical dyneins pulling on the MTs.
The activated dyneins are uniformly distributed on the anterior side while on the posterior side their density decreases linearly
with distance from the pole the to the mid-plane. The blue, yellow and red colors on the boundaries denote, low, average and
high number, respectively, of attached MTs.

by cortically bound dyneins on the anterior cortex is constant, while the capture rate on the posterior side
decreases linearly with distance along the AP axis from the posterior pole to the PNC center; see Fig. 2.
Also, following Kimura & Onami [2007] and the experimental findings of Grill et al. [2003], we take the
maximum rate of attachment on the posterior side to be 3/2 times larger than on the anterior. The slope of
decrease in attachment probability is determined by imposing force balance at the PNC center.

In our model, the number of motors on the cortex is finite. For the simulation results presented in the
main text, this number is 100. Each motor applies 3 pN force along the captured MTs plus-end tangent
direction (F = 3Xs|s=L) [Gönczy et al., 1999; Howard, 2001]. We assume that the motors are distributed
uniformly on the surface of the cortex, and the asymmetric activation of the motors is implemented by
taking the probability of attachment of MTs to cortically bound dyneins a linearly decaying function of the
distance from the posterior pole on the posterior side of the cell, while on the anterior side the probability is
taken to be uniform. Also each motor can only attach to a single MT. Finally the detachment rate of the cor-
tically attached MTs is assumed constant (0.3 min−1). These chosen parameters for the number of motors,
the end-forces from individual cortically bound dynein, and the detachment rate of the captured MTs are
in general agreement with the estimates from [Redemann et al., 2010] who used softened cell membranes to
estimate the number of cortical force generators at the end of anaphase.

2.3 Cytoplasmic pulling

In the cytoplasmic pulling model, cargo-carrying dyneins walk towards the minus-ends of MTs and apply
a pulling force on MTs that is equal and opposite to the hydrodynamic force needed to push the cargo
through the cytoplasmic fluid. The basics are that a PNC starting migration on the posterior side of the cell
has centrosomal MTs that can grow longer in the anterior direction than in the posterior. This leads to more
attached cytoplasmic dyneins and payloads and hence a net force on the PNC towards the anterior [Kimura
& Onami, 2005, 2007; Kimura & Kimura, 2011; Shinar et al., 2011]. A schematic of this model is presented
in Fig. 3. The force that dyneins apply to MTs is related to their walking speed through a force-velocity
relationship of a single motor as F = Fstall (1−max(|V|, Vmax)/Vmax) [Shinar et al., 2011], where Fstall and
Vmax are the stall force and maximum walking speed of the motor. The force and velocity of the motor
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Figure 3: A schematic of the cytoplasmic pulling model. More cytoplasmic dyneins are attached to the anterior MTs of longer
lengths. As a result the PNC moves towards the anterior side until it centers. The cytoplasmic flows arise from the motion of
the PNC and the astral MTs, and the motion of cargos towards the centrosomes.

are also related by the drag coefficient of the cargo: F = γcargoV. Combining the two relationships gives
Fmotor = FstallVmax/

(
Vmax + Fstall/γcargo

)
. Here we have assumed that the PNC velocity is negligible in

comparison to the walking speed of motor-proteins. If we take the cargo to be approximately a sphere with
an average radius of 0.25 µm, we can compute the average force and velocity of the dynein motors that
are Fmotor = 0.83Fstall ≈ 0.91pN and V = 0.2Vmax = 0.4µ m s−1. Assuming the migration process takes
place in roughly 5min, the average velocity of PNC is VPNC ≈ 0.065µm s−1, which is much smaller than the
walking speed of the motors and does not play a determining role in the analysis given for force-velocity
relationship of the motors. We assume a uniform probability of attachment of dynein motors on the MTs
and model the force applied by the motors by a continuum model: f motor = 0.83ndynFstallXs where ndyn is
the number of the attached dyneins per unit length and is the only fitting parameter in the simulations. The
predicted centering and rotation times with the choice of ndyn = 0.1 µm−1 (presented in this study) was
found to be in the range of experimentally observed values that is approximately 5 min.

3 The free-sliding cortical pushing model

In the free-sliding model, we assume that the cortical repulsive forces are applied only along the normal
direction to the surface i.e. the MTs cannot penetrate the boundary but they can grow or slide freely in the
directions tangent to the boundary. We model this using a soft repulsive force,

FM = −FS
P exp(−∆r/∆r?) (n̂cor · xs) n̂cor,

where ∆r is the minimum distance of the MT plus-end from the cortex. We set ∆r? = 0.5 µm, which allows
us to simulate the dynamics using reasonable time-steps. When the MTs align tangentially to the boundary,
|xs · n̂cor| � 1. This results in vanishing end-point force on them. A schematic of this model is shown in
Fig. 4a.

Figure 4c shows a snapshot from long-time simulation of the free-sliding model and points to the key
difference between the free-sliding and the no-sliding models: while both models yield centration of the
PNC/MT-array complex, only the no-sliding model shows rotation of the intercentrosomal axis to proper
position (see also Fig. 4b). Another difference is the conformation of the MTs in these two models. In the
free-sliding model the MTs near the cell cortex are bent and aligned with the boundary, while, as shown in
the main text, the no-sliding model results in the buckling of MTs near the boundary.

We now present and discuss the generated flows of the free-sliding model in Fig. 5. Recall that flows
in both cortical pushing models are generated by the average motion of the PNC/MT-array complex (sim-
ilar to the flow shown in Fig. 3a of the main text) and flows due to MT deformations near the periphery
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(a) Schematic of the free-sliding model
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(b) Position & alignment of the PNC

(c) A 3D snapshot of long-time simulations

Figure 4: (a) A schematic presentation of the cortical pushing free-sliding cortical pushing model. In this case the repulsive
force is applied normal to the cortex and the magnitude of the force is re- duces as MTs bend and become more aligned with
the cortex. (b) A 3D snapshot of the long-time simulation results. (c) The variations of PNC position and the angle between
intercentrosomal axis and AP-axis with time. The PNC properly centers but fails to rotate in a physiologically reasonable
time.

(shown schematically in Fig. 6a of the main text). The difference between the cytoplasmic flows of these
two variations of the cortical pushing model arises from the difference in the deformations of their MTs. In
the free-sliding model, the end-forces acting on the MTs, as well as the strength of the flow generated by
them, decrease as the MTs bend and align further with the cortex. Indeed, in the limit of MTs being aligned
with the cortex the growth reaction does not generate any flow, and Fig. 5b and Fig. 5c show that many MTs
are aligned with the cortex in this model. As a result, unless the PNC is within 20% of the AP-axis length
from the center, the flow induced by the average motion of the PNC/MT-array complex in the free-sliding
model has a dominating effect and the flow remains qualitatively similar to that of moving PNC and the
attached MTs under an external force shown in Fig. 3a of the main text. However, upon approaching the
center the PNC velocity vanishes and the weak flow induced by the deformations of the MTs near the pe-
riphery becomes comparable to the weakening flow induced by motion of the PNC/MT-arrays; a snapshot
of the flow in this regime is shown in Fig. 5b and Fig. 5c where the arrows show the fluid flow streamlines
which are in the direction of bending deformations and orthogonal to the cortex.

4 A torque instability in cortical pushing models

We provide a simplified model to demonstrate the minimum physics required for observing the torque
instability that arises in cortical pushing models, which then properly aligns the intercentrosomal axis with
the AP-axis. A schematic of the model is given in Fig. 6(a). Here, we assume the PNC is centered and that
the intercentrosomal axis forms the angle α? with the AP-axis, and N straight MTs are interacting with the
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(a) t=0:40 (b) t=14:00 (c) t=180:00

Figure 5: Snapshots of the cytoplasmic flows in the free-sliding submodel. These flows arise from the motion of the PNC and
the astral MTs, and the deformations of the MTs near the cortex. The cytoplasmic flow prior to centering is dominated by the
motion of the PNC and the attached MTs.

cortex. We consider two models for the pushing force applied from the cortex :

F1(L) = −λ1EL−2n̂ (7a)

F2(L) = −λ2EL−2p̂ (7b)

where L is the length of the MT, n̂ is the normal to the surface pointing outwards and p̂ is the unit alignment
vector of the MT.

ri α�

ith MT
F1

F2

(a) Schematic of the simplified cortical pushing model
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(b) Angular velocity vs alignment angle

Figure 6: (a) A schematic presentation of the simple cortical pushing model used only to demonstrate the minimum physics
required to achieve torque instability in cortical pushing mechanism. (b) The dimensionless angular velocity vs the angle of
intercentrosomal axis with AP-axis (α?).

These two variations of force are simple representations of free-sliding (force normal to the cortex) and
no-sliding (force in the opposite direction of the tangent of the MT). The net torque on the PNC is computed
by summing the torque induced by the end-forces on the individual MTs:

T =
N

∑
i=1

ri × Fi(Li)

where ri is the vector connecting the center of the PNC to the plus-end of the ith MT. Note that this simple
model does not contain the dynamic instability of MTs, any detailed hydrodynamic interactions (HIs), or
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MT flexibility. In both models we take the drag coefficient of the PNC and the attached MTs, γ, to remain
constant with the change of α?.

Figure 6(b) shows the dimensionless angular velocity, Ω? = Ω/Ω0, as a function of α? where Ω0 =
λEN

8πηa4
PNC

. The results clearly show that although the net torque is zero at α? = −90 and 90, infinitely small

fluctuations induce a net torque that rotates the PNC towards the AP axis in a positive feed-back loop. On
the contrary when the PNC is rotated away form the AP, a net torque is generated to realign the structure
with the AP axis. Also the predictions from both variations of cortical forces are quantitatively close, which
suggest that very slow rotation of the PNC in our detailed free-sliding model is not induced by the angle
that the force is applied.

5 Cytoplasmic flows are generic features of active mechanisms

To demonstrate that the observed flow signatures are generic to each active mechanism, we present the
results of our simulations for different values of of biophysical parameters that the ones presented in main
text. As an example, in Fig. 7 we present the snapshots of the cytoplasmic flows in the no-sliding submodel
in the early stages of migration (top), after centering (middle) and after rotation (bottom) for two values for
the minimum rate of catastrophe ( fmin = 0.10 s−1 and 0.20 s−1) in cortical pushing model outlined in §2,
with fmin = 0.20 corresponding the results presented in the main text.

(a) fmin = 0.10 s−1

(b) fmin = 0.20 s−1

Figure 7: Snapshots of the simulated cytoplasmic flows in the initial stages of migration, after centering, and rotation of
PNC in cortical pushing with the no-sliding motion sub-model for two different turnover time of the MTs growing against
the cortex : (a) fmin = 0.10 s−1, and (b) fmin = 0.20 s−1.

The snapshots clearly show that as a consequence of decreased rate of catastrophe (resulting in increas-
ing contact time of MTs with the cell periphery) the MTs are substantially more deformed at fmin = 0.10 s−1

compared with fmin = 0.20 s−1 (Movies S3 and S5). The rotation time of PNC for fmin = 0.10 s−1 was found
to be roughly half of the rotation time of PNC with fmin = 0.20 s−1, while the centering times in these two
variations remained roughly unchanged (not shown here). Despite these evident changes in the dynamics
of the PNC migration and the shape of the MTs, the generated flow signatures remain unchanged with this
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change in the rate of catastrophe. Recall that these features for no sliding sub-model are strong flows near
the cortex in the direction of the MTs and in the opposite direction of polymerization.

6 Centering through the cortical pulling mechanism depends on the
choice of model parameters

As mentioned in the main text, unlike the other two mechanisms, in the cortical pulling model the pronu-
clear centering is only achieved in a narrow range of parameters of the model used in this study. These
parameters include the total number of cortically bound dyneins, the rate of detachment of captured MTs
from cortically bound dyneins, and the slope by which the density of the cortically bound dyneins on the
posterior side decrease from the pole to the dividing plane of the cell. Here we give few examples of failed
centration of the PNC.
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(b) Slower detachment rates

Figure 8: Two cases where the cortical pulling model does not center the PNC: (a) the number of cortical dynein motors are
doubled with respect to the case of properly centered PNC in the main tex; and (b) the rate of detachment is increased a factor
of 2.

For example, when the number of the cortically bound dynein motors is increased from 100 to 200, the
PNC initially migrates towards the center. However, at later times the PNC moves back to the posterior
side of the cell. Despite failure of centering, the intercentrosomal axis of PNC rotates and properly aligns
with the AP-axis. These results are presented in figure 8(a).

In another example shown in figure 8(b), we increase the rate of detachment from 0.3 (1/min) to 0.6 (1/min).
While the intercentrosomal axis successfully aligned with the AP axis, the PNC remained in the posterior
side of the cell.

Changing the spatial variation of the cortical dyneins also resulted in failed centering, and successful
rotation which are not shown here. It seems that this particular choice of model for cortical pulling mecha-
nism allows multiple statistically stable solutions subjected to zero net force on the PNC, while other active
mechanisms are not present. Our results suggest that the final position of the PNC depends critically on
the competition between the different time-scales in this problem, which include the average time it takes
MTs to grow to the cortex, the time the MTs remain attached to the cortex, and the time scale of migration.
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