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Macroscopic, phenomenological models are useful as concise framings of
our understandings in fields from statistical physics to finance to biology.
Constructing a phenomenological model for development would provide
a framework for understanding the complicated, regulatory nature of
oogenesis and embryogenesis. Here, we use a data-driven approach to
infer quantitative, precise models of human oocyte maturation and
pre-implantation embryo development, by analysing clinical in-vitro
fertilization (IVF) data on 7399 IVF cycles resulting in 57 827 embryos.
Surprisingly, we find that both oocyte maturation and early embryo devel-
opment are quantitatively described by simple models with minimal
interactions. This simplicity suggests that oogenesis and embryogenesis
are composed of modular processes that are relatively siloed from one
another. In particular, our analysis provides strong evidence that (i) pre-
antral follicles produce anti-Miillerian hormone independently of effects
from other follicles, (ii) oocytes mature to metaphase-II independently of
the woman'’s age, her BMI and other factors, (iii) early embryo development
is memoryless for the variables assessed here, in that the probability of an
embryo transitioning from its current developmental stage to the next is
independent of its previous stage. Our results both provide insight into
the fundamentals of oogenesis and embryogenesis and have implications
for the clinical IVE.

1. Introduction

Understanding the manner by which a multicellular organism develops from a
single cell is one of the grand challenges of biology. In mammals, this process
begins with oogenesis inside the female, which results in an egg that becomes
an embryo after fertilization. Early embryo development in mammals, includ-
ing humans, is self-organized [1,2]: the course of events that unfold are
governed by the embryo’s internal dynamics and can proceed without external
signals. Oogenesis and early embryogenesis have been studied from diverse
perspectives, including molecular genetic, cell biological, chemical and mechan-
ical [3-13]. Despite the vast amount of knowledge that has been obtained, many
basic questions remain, including: what determines which oocytes are selected
for ovulation? How is the timing of embryonic events regulated? How are
oogenesis and embryogenesis negatively impacted by age and disease?
Answering these will provide fundamental insight and have strong impli-
cations for evolution and for medical treatments of infertility. However, these
issues are difficult to study using the molecular approaches that are the main-
stay of current research, because of the integrated nature of the problems they
pose concerning the overall trajectory of development.

An alternative to the microscopic, molecular perspective is to develop a
macroscopic, phenomenological understanding. Such an approach has been
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productive in diverse areas from statistical physics [14] to
finance [15] to some fields of biology [16-18], including
protein evolution [19] and cell-size control in bacteria
[20-22]. These phenomenological models focus on describing
a few key variables that subsume the detailed descriptions of
the component parts, e.g. temperature rather than the motions
of individual molecules, or market volatility rather than the
financial decisions of individual companies or investors. One
significant concern is that the great complexity of oogenesis
and embryogenesis might make simple, phenomenological
descriptions inapplicable. Furthermore, the validity of the
phenomenological approach can only be determined by devel-
oping models and rigorously testing them. This requires a
large amount of quantitative data, which is difficult to
obtain from oocytes and embryos in model organisms.

Here, we overcome this challenge by leveraging a large
dataset from 7399 routine clinical in-vitro fertilization (IVF)
treatment cycles resulting in 98264 oocytes and 57827
embryos; the treatments were performed from 2012 to 2017
at the Brigham and Women’s Hospital in Boston, MA. We
show that the data can be quantitatively described using
simple, phenomenological models. The large variance in the
data allows testing these models over a wide range of phys-
iological conditions. The models we develop are Bayesian
networks, a form of probabilistic graphical models which rep-
resents conditional dependencies by a directed, acyclic graph.
We infer models directly from the data, making little use of
prior knowledge. The resulting models recapitulate well-
established aspects of oocyte and embryo development.
Moreover, the resultant models are sparse: only one or two
factors directly impact physiological processes. This implies
that human oogenesis and embryogenesis are highly modu-
lar. Our analysis leads to a number of additional, surprising
conclusions. We present strong evidence that:

(i) Each pre-antral follicle produces anti-Miillerian hor-
mone (AMH) independently of effects from other
follicles. This argues that AMH is a faithful indicator
of the number of pre-antral follicles, consistent with
its physiological role in regulating follicle recruitment
and supporting its clinical use as a measure of ovarian
reserve [23-26].

(i) While the number of oocytes released from follicles
depends on many factors, the probability that a
released oocyte matures to metaphase-II is indepen-
dent of the patient’s age, BMI and other, external
factors. This argues that physiological processes that
are correlated with these external factors, such as
mitochondrial metabolism and aneuploidy [27-29],
do not significantly impact meiosis resumption.

(iii) After oocytes are fertilized, the probability of success-
fully transitioning from one embryonic developmental
stage to the next depends on the embryo’s present
state, but not on its earlier state. Thus, embryo devel-
opment is memoryless, at least for the variables
examined here. This argues that clinical embryo selec-
tion procedures need only consider the state of the
embryos immediately before transfer, as the state of
the embryo at earlier times provides no additional
information.

Taken together, our results show that the development of
oocytes and embryos emerges as a simple process, despite

the underlying molecular complexities of the biology and [ 2 |

despite the plethora of disease aetiologies and treatment pro-
tocols presenting in a clinic. More broadly, this work validates
the use of phenomenological models of oogenesis and
embryogenesis by demonstrating that simple models can be
constructed without sacrificing quantitative accuracy.
Although we infer the models using data drawn from con-
trolled ovarian stimulation and not from natural menstrual
cycles, the models provide insight into the principles that
govern oogenesis and embryogenesis, and may be useful in
guiding clinical IVF treatments.

2. Results and discussion

2.1. A model of oocyte development

The formation of a healthy embryo begins with the successful
progression of an oocyte from prophase-I arrest to metaphase-
II. Which clinical factors affect the number of metaphase-II
oocytes retrieved during an IVF ovarian stimulation?

The clinical data contain 69 variables that describe
either the patient or the ovarian stimulation. We start by
examining four variables that are strongly correlated with
the number of metaphase-II oocytes: (1) the number of total
eggs retrieved during an ovarian stimulation cycle (Eggs),
(2) the number of eggs in metaphase-II arrest (MII), (3) the
patient’s maximum serum oestradiol concentration during
the cycle (E2) and (4) the patient’s serum AMH before the
cycle. Oestradiol is a hormone produced by the ovaries
during natural and stimulated ovulatory cycles [30]; AMH
is considered a measure of the patient’s ovarian reserve
[26]. Each of these variables varies widely across the 4910
cycles for which all four variables are recorded, with
coefficients of variation of 0.5-1.2 (figure 1a, left). All four
variables are strongly correlated with one another, with
Pearson correlation coefficients between 0.26 and 0.91 and
p-values between 1073 and 107! (figure 14, right).

To understand which factors quantitatively affect oocyte
maturation, we first search for conditional independencies
among the variables AMH, MII and Eggs. A conditional
independency between two variables implies that one vari-
able can be completely described without direct knowledge
of the other, suggesting the existence of a simple phenomen-
ological model. To search for conditional independencies, we
nonlinearly regress both MII on Eggs and AMH on Eggs, by
finding the best-fit polynomial that maximizes the Bayesian
posterior evidence. This method allows for capturing com-
plex dependencies without overfitting the data [31,32] (see
electronic supplementary material, §1); we also split the
data into separate train and test sets as a further check
against overfitting. We then take the residuals from the two
regressions and evaluate their correlation. We denote this
procedure as Corr(AMH, MII | Eggs). We find that, although
there is a strong correlation between AMH and MII
(figure 1b, left), that correlation disappears after conditioning
on Eggs: Corr(AMH, MII, |Eggs)=-0.02 (p =0.19; figure 1b,
centre). This correlation is both consistent with zero and
smaller than an effect size threshold of 0.05, suggesting that
AMH and MII are conditionally independent given Eggs.

We encode this conditional independency using a class of
graphical models known as Bayesian networks. These have
found usage in causal inference [33-36]; here, we use them
to construct phenomenological models that correspond to
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Figure 1. (a) Distributions and correlations of the four variables AMH (measured in International Units, IU), Eggs, Mil and E2 (measured in pg mi™"). (b) Left: the
number of metaphase-Il oocytes retrieved (MII) is strongly correlated with the patient’s serum AMH. Grey dots: raw data, red circles: raw data binned into 20
separate bins with equal counts, green line and shaded region: nonlinear regression and errors. Centre: that correlation disappears after regressing against the
total number of retrieved oocytes (Eggs). Grey dots: residuals after regressing against Eggs, red circles: residuals binned into 20 separate bins with equal
counts, green line and shaded region: linear fit to the residuals, with slope and standard error shown at top of plot. The axes range of the plots is cropped
to show details of the trends. Right: this conditional independency suggests a graph of the form AMH—Eggs—MII. (c) Left: the patient’s serum oestradiol concen-
tration (E2) is strongly correlated with AMH. Centre: that correlation disappears after regressing against Eggs. Right: this conditional independency suggests a graph
of the form AMH-Eggs—MII. (d) Left: Mil is strongly correlated with E2. Centre: while regressing against Eggs greatly weakens that correlation, E2 and MIl remain
correlated after conditioning on Eggs. This suggests a fully connected graph is needed to describe these three variables (right). (¢) A graphical model that is
consistent with the data. Edge labels show the conditional correlation coefficients after conditioning on all other incoming edges; the data are consistent with
the arrow marked with a * oriented in either direction. (f) The graphical model expected from prior knowledge of ovarian stimulation.

mechanistic descriptions of biology. Briefly, for a given factor- of the second explicitly depends on the first. Two variables
ization of a probability distribution, these graphs contain a are conditionally independent if all paths from one variable
directed edge from one variable to another if the probability to the other are ‘blocked’, by head-to-tail or tail-to-tail
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nodes meeting at a variable that is conditioned on, or by
head-to-head nodes meeting at an edge that is not con-
ditioned on [34,37]. Both the observed correlation between
MII and AMH and their conditional independency given
Eggs can be captured by any of the graphs AMH — Eggs —
MIl, AMH < Eggs—MII, or AMH « Eggs <« MII; we
denote this ambiguity by AMH-Eggs-MII, with an as-yet
undetermined orientation of the arrows (figure 1b, right). If
the data are described by one of these graphs, then Eggs
and AMH should remain correlated given MII, which is
indeed the case: Corr(Eggs, AMH | MII) = 0.24 (p = 10~*; elec-
tronic supplementary material, figure 2a). Likewise, MII
and Eggs should remain correlated given AMH, which is
the case: Corr(MII, Eggs | AMH) = 0.87 (p < 107>%; electronic
supplementary material, figure S2b).

Second, we examine the variables AMH, E2 and Eggs.
AMH and E2 are strongly correlated (figure 1c, left), but
regressing AMH and E2 on Eggs shows that Corr(AMH,
E2 | Eggs) =0.03, consistent with no conditional correlation
(p=0.11; figure 1c, centre). This suggests a graph of the
form AMH-Eggs-E2 (figure 1c, right). Third, we examine
Eggs, MII and E2. While regressing on Eggs greatly weakens
the correlation between MII and E2 (compare figure 1d left
and centre), the measured conditional correlation is still posi-
tive: Corr(E2, MIIIEggs)=0.08, p~107°. Thus, an edge
must connect each of Eggs, E2 and MII (figure 1d, right).
Finally, we examine the variables AMH, E2 and MII and
find no additional conditional independencies (electronic
supplementary material, figure S2).

Of the 543 graphical models that describe four variables,
only eight models capture exactly the two conditional
independencies described above. The data alone cannot dis-
tinguish between these graphs. However, the patient's AMH
is measured before the ovarian stimulation starts, whereas
the other three variables are measured during the treatment.
Thus, any graph with an edge pointing into AMH cannot cor-
respond to a mechanistic description of the biology. Ruling out
these graphs leaves only two graphs consistent with both the
data and a mechanistic interpretation (figure 1e).

Physiologically, this quantitative, phenomenological
model recapitulates our qualitative understanding of ovarian
stimulation (figure 1f): (1) pre-antral follicles, containing
immature oocytes and associated somatic cells, produce the
hormone AMH [23,25,38]. Since pre-antral follicles can
grow into large antral follicles with prophase-I-arrested
eggs, AMH is a measure of the potential number of oocytes
that could develop. This is captured by the inferred arrow
in figure le from AMH to Eggs, which indicates that the
patient’s AMH determines how many eggs she will produce.
(2) Antral follicles produce oestradiol, captured by the
inferred arrow from Eggs to E2. (3) Some, but not all, eggs
progress from prophase-I arrest to metaphase-II arrest. This
is captured by the inferred arrow from Eggs to MIL (4)
During natural ovulation, the oestradiol produced by antral
follicles signals the pituitary and hypothalamus to release
hormones which modulate oocyte maturation. During an
ovarian stimulation, clinicians attempt to temporarily disable
this feedback between the hypothalamus and the pituitary
[30], suggesting that oestradiol should not impact oocyte
maturation during ovarian stimulation. However, the inferred
arrow from E2 to MII suggests that a weak feedback between
the hypothalamus, the pituitary and oestradiol is still present
during an ovarian stimulation cycle.

This inferred phenomenological model (figure 1le) pro-
vides a quantitative representation of oocyte development
that allows direct and indirect effects to be disentangled.
For instance, a patient starting treatment with a higher
AMH is likely to produce more oocytes, via the direct
arrow AMH — Eggs. In addition, that patient is likely to
have a higher oestradiol level during the cycle, as the
additional eggs she is likely to produce will on average pro-
duce more oestradiol, via the path AMH — Eggs — E2.
However, the graph states that this effect is indirect: the
patient’s E2 increases only through the associated increase
in the number of eggs for high-AMH patients. This is borne
out by the data. Likewise, a patient with a larger number of
MII oocytes retrieved is likely to have a higher AMH, since
following the arrows backwards shows that higher MII
implies that Eggs is higher, and higher Eggs implies a
higher AMH. However, once again, this is an indirect effect;
the patient’'s AMH is more likely to be high only because of
the associated increase in Eggs when many MII oocytes are
retrieved.

2.2. Oocyte maturation is robust to other factors

A woman’s age and obesity are known to affect her fertility
and IVF prognosis. Does age or obesity directly affect
oocyte maturation after accounting for E2 and Eggs?

The data show that age has no direct effect on an oocyte’s
ability to reach MII. The conditional correlation between MII
and age is consistent with zero: Corr(Age, MII|Eggs, E2) =
0.02 (p=0.35, figure 24). In addition, the data constrain the
magnitude of any effect to be tiny. Fitting a line to the
residuals constrains the slope to be (1.1+1.2)x 107> MII
oocytes/year (point estimate + standard error). To place this
in perspective, consider a treatment cycle for two women,
aged 33 and 40 years old (the 25th and 75th percentile in
the data). If the treatment results in the same number of
total oocytes and the same max oestradiol for both women,
then on average the number of retrieved MII oocytes
should differ by no more than 0.2. Since the median MII
oocytes retrieved per cycle is eight, the data constrain the
direct effect of age on MII to be 2% or less.

Likewise, the data show that the woman’s BMI has no
direct effect on an oocyte’s ability to reach MII. The con-
ditional correlation between MII and BMI is consistent with
zero: Corr(BMI, MII | Eggs, E2) =—-0.005 (p =0.78; figure 2b).
The data constrain the direct effect of BMI on MII to be 1%
or less.

Ovarian stimulation drugs are necessary for multiple
oocytes to reach metaphase-II in a single cycle. However,
the data show that the dose of these drugs has no direct
effect on an oocyte’s ability to reach MII. The conditional cor-
relation between MII and the dose of FSH or HMG is
consistent with zero: Corr(FSH, MIIIEggs, E2)=0.01 (p=
0.49; figure 2c), Corr(HMG, MII | Eggs, E2) =—-0.03 (p=0.08;
figure 2d). The data constrain the direct effect of these stimu-
lation drugs to be 1% or less for FSH, and 5% or less for
HMG. These observations show that oocytes develop to
MII independently of a patient’s age, her BMI, or details of
the ovarian stimulation procedure.

Perhaps only a fixed number of oocytes per cycle are
capable of maturing to metaphase-II, and therefore the prob-
ability of an oocyte being metaphase-II depends on the total
number of eggs retrieved. However, while Eggs is strongly
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Figure 2. MII versus the patient’s age (a), BMI (b), and the doses of stimulation drugs FSH (c) and HMG (d), after regressing against Eggs and E2. Grey dots show
the residuals from the regressions, red circles and error bars show the mean and standard error of the data binned into 20 bins with equal number of points, and
green lines, shaded regions and labelled slopes show the mean and standard error of the best linear fit to the residuals. (e) The fraction of MIl oocytes (MIl/Eggs)
versus Eggs. (f) Histogram of observed MIl (red circles) versus that expected from independently triggering follicles (green line and shaded region show the
expected counts and their standard deviation), for the 116 cycles that have 17 eggs retrieved, which is where the discrepancy between the two histograms is

the largest as measured by a y*test (p < 107>%

, primarily due to the cycles with MII of 1-5). On the scale of the plot, the expected histograms from a binomial

distribution where the probability for an oocyte being metaphase-Il is constant is indistinguishable from one where the probability varies with E2.

predictive of MII, it provides no predictive power for the frac-
tion of eggs in MII arrest (MII/Eggs): Corr(MII/Eggs,
Eggs)=—-0.01 (p=0.48). Linearly regressing MII/Eggs on
Eggs gives a slope tightly constrained near zero (figure 2e).

Combined, these observations suggest the following
simple picture for oocyte maturation: each follicle indepen-
dently triggers its oocyte to leave prophase-I, with a
probability that depends only on E2. The oocyte then pro-
gresses to metaphase-II, with both processes independent of
interactions with other follicles or the aggressiveness of the
ovarian stimulation.

To check whether this simple picture completely describes
oocyte maturation, we examine the distribution of MII for
fixed Eggs. If each follicle independently triggers its egg to
progress to metaphase-II with some probability p, then MII
for each cycle will be binomially distributed, denoted as
B(MII; Eggs, p). If that probability depends only on E2, then
the measured distribution of MII across cycles with a given
Eggs should be the average of many binomial distributions,
each with a probability that depends on E2: (B(MII; Eggs,
p(E2)))E». Instead, the empirical distribution is much broader
than the expected one (figure 2f). This discrepancy suggests
that additional factors affect oocyte maturation, such as bio-
chemical processes within the oocyte that are shared by
multiple eggs from the same patient, interactions between

follicles beyond serum oestradiol, or simply other clinical
factors that we have not accounted for.

The data provide some insight into human meiosis,
especially given prior knowledge of human ovulation. As a
woman ages, the oocytes she ovulates become much more
likely to be aneuploid, rising from an aneuploidy rate of
roughly 25% at age 30-80% at age 42 [27,39,40]. Chromosomal
signatures show that aneuploidy in human oocytes can arise
both during the oocyte’s progression from prophase-I to meta-
phase-II and immediately after fertilization [11,41-43]. In
mitotic cells, mis-segregation of chromosomes is reduced by
the spindle-assembly checkpoint [44], which can arrest mitosis
until chromosomes are properly aligned. If there were a strong
spindle assembly checkpoint in meiosis I, then the typically
aneuploid oocytes from older women would reach meta-
phase-II at a reduced incidence than those from younger
women. Instead, oocytes from older and younger women
reach metaphase-Il arrest at the same incidence. This is consist-
ent with experimental work that shows that human oocytes
have a weak meiotic spindle assembly checkpoint [45-47].

2.3. Follicular recruitment is robust to patient factors
While the patient’s age, BMI and dose of ovarian stimulation
drugs do not directly affect an oocyte’s progression to
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metaphase-II, they could affect the rest of follicular recruit-
ment. To investigate this, we examine the joint distribution
of all of Age, BMI, AMH, FSH, HMG, Eggs, E2 and MII, con-
structing a directed acyclic graph that is consistent with the
data. The number of possible graphs grows rapidly with
the number of variables: there are 543 possible graphs for
four variables, but 783, 702, 329, 343 possible graphs with
eight variables. To deal with this inordinately large number
of possible models, we use prior knowledge to split the vari-
ables into three groups: prognostic variables measured before
the treatment starts (Age, BMI and AMH), treatment vari-
ables (FSH and HMG), and response variables measured
after the drugs have been applied (Eggs, MII, E2). We then
search for graphs that are consistent with a mechanistic
interpretation, by excluding graphs with edges directed
from treatment to prognostic variables, from response to
prognostic variables, or from response to treatment variables.

Among the prognostic variables, the data show that BMI
does not directly affect AMH: Corr(AMH, BMI | Age) = —0.04
(p=0.01; electronic supplementary material, figure S4a).
Physiologically, this implies that the likelihood that a primor-
dial follicle develops into a pre-antral follicles is independent
of obesity. This is the only conditional independency among
the prognostic variables.

The data show that clinicians customize the doses of
FSH and HMG based on the patient, as expected. The FSH
dose depends on all three prognostic variables, and the HMG
dose depends on Age, AMH and FSH, but not BMI (electronic
supplementary material, figure S4f). The lack of conditional
independencies between the treatment and prognostic vari-
ables demonstrates that the conditional independencies we
do see elsewhere are real and not an artefact of our analysis.

Among the response variables, the data show that
follicular recruitment is simple, although follicular hormone
production is not. The data are consistent with Age and
BMI having no direct effect on Eggs: Corr(Age, Eggsl|
AMH), HMG=-0.04, p=0.01; Corr(BMI, Eggs| AMH,
HMG) = -0.01, p=0.54 (electronic supplementary material,
figure S4c,d). Physiologically, this suggests that the ability of
a pre-antral follicle to be recruited does not worsen with age
or obesity. Likewise, Eggs is conditionally independent of
FSH: Corr(FSH, Eggs|AMH, HMG)=-0.04 (p=0.02;
electronic supplementary material, figure S4e). This suggests
that, at this particular clinic, clinicians prescribe sufficient
FSH to recruit all the follicles in the cohort activated from
the primordial pool in that menstrual cycle. Interestingly, we
observe a weak negative correlation between Eggs and the
dose of HMG: Corr(HMG, Eggs| AMH) =—0.11 (p=10"").
Taken at face value, this seems to imply that HMG is typically
supplied at more than the optimal dose at this clinic. While
there is some evidence that excessive HMG can cause follicles
to degrade [48,49], another possibility is that the negative cor-
relation is due to clinicians prescribing more HMG to patients
whom they know a priori to be poor responders even after
accounting for their age, BMI and AMH—for example,
patients who have had a poor response in previous treat-
ments. However, the correlation remains negative even
when excluding patients on repeat stimulation cycles:
Corr(HMG, Eggs| AMH, first cycle) = —0.09, p~10~°. Com-
bined, the data paint a simple picture for follicle
recruitment: all available follicles are typically recruited, inde-
pendently of effects from age or obesity but weakly affected
by HMG. Finally, in contrast to the simplicity of Eggs and

MII, all of Age, BMI, FSH, HMG and Eggs affect E2. These n

observed conditional independencies are captured by the
graphical model in figure 3a.

The model in figure 3a predicts 99 conditional indepen-
dencies among the eight variables shown. If the model
completely describes the data, then the 99 corresponding con-
ditional correlations must be consistent with zero, i.e. none of
their p-values should be statistically significant. As a stringent
check of the model, we measure the conditional correlations
and associated p-values for each of these 99 independencies
in both the train and test sets. We then check that the
measured conditional correlations are consistent with zero
by comparing their associated p-values to those calculated
from datasets simulated according to the model in figure
3a. We find that the measured p-values are consistent with
the simulated ones, although the lowest measured p-value
is lower than the typical simulated one (figure 3b). By con-
trast, datasets generated according to more complicated
models display a different distribution of these p-values
(figure 3c). Moreover, anything missing from the model
in figure 3a must correspond to a small effect with small
explanatory power. Fitting the training data with a fully-
connected model explains 0.6% or less of each variable’s
variance in the test data, with the fully-connected model
actually performing worse on the test set for most of the
fits than the model in figure 3a does (electronic supplemen-
tary material, §4). Combined, these observations show that
the graphical model accurately describes human ovarian
physiology and oogenesis.

Viewed holistically, the probabilistic graphical model in
figure 3 has a simple mechanistic interpretation. The patient’s
age and BMI only act to determine the hormone levels.
Hormones other than oestradiol determine how many antral
follicles develop. Follicles then produce oestrogen and trigger
eggs to progress to metaphase-II, with a slight feedback
between these. Because of this simplicity, changes due to age
or obesity manifest themselves in simple ways, after ignoring
the physiologically irrelevant question of how clinicians
choose drug doses for ovarian stimulation. In particular, the
only direct effect of obesity on the oocyte maturation process
is to decrease E2. This is consistent with work showing that
obesity affects fertility by interfering with the hormonal regu-
lation of ovulation [29]. The primary effect of age on the oocyte
maturation process is to decrease the ovarian reserve, as
measured by the patient’'s AMH. Physiologically, this is con-
sistent with the well-known decrease in a woman’s pool of
primordial follicles as she ages [30].

While this model is a quantitative description of oocyte
maturation, it is not a microscopic model. There are many
intermediate factors that are not included in the model but
are known to affect follicular recruitment and oocyte matu-
ration, such as GnRH from the hypothalamus, FSH and LH
from the pituitary and inhibin, androstenedione and cAMP
from the follicles. However, the model’s accuracy suggests
that these additional factors are intermediate and can be
coarse-grained out to give a macroscopic, phenomenological
description of oocyte maturation. Moreover, the model’s
accuracy also shows that these additional factors do not
cause additional dependencies between variables: the
model places strong constraints on age-related sensitivity of
oocytes to the maturation signal, for example.

AMH and E2 are produced by ovarian follicles at different
stages in follicular growth. The data provide insight into both
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Figure 3. (a) A graphical model of oogenesis that is consistent with a mechanistic interpretation of the data. Labels show conditional correlation coefficients. For
edges with two labels, the upper corresponds to FSH, the lower to HMG; dashes signify no dependence. The data are consistent with marked arrows (*) oriented in
either direction. (b) Rank plots of p-values for the 99 conditional correlations corresponding to the conditional independencies predicted by the model. The green
line shows that from the training data, the red line that from the test data. The black line and shaded regions show the median, 95% and 99.9% centred percentile
of rank plots from 3000 datasets simulated according to the proposed model. (c) The same as (b), but showing the distribution of rank plots for the 99 conditional

correlations from fully connected, linear Gaussian models.

these processes. For a given number of retrieved oocytes, the
mean of AMH is linear in the number of retrieved oocytes,
with an intercept near zero (figure 44, also electronic sup-
plementary material, figure S5). For Eggs not too large, the
variance of AMH is also linear in Eggs (figure 4b). The devi-
ation from linearity at large Eggs is largely due to patients
with polycystic ovary syndrome, who tend to have high
AMH; excluding patients with a diagnosis of ovulatory dys-
function (i.e. polycystic ovary syndrome) brings most of the
Var(AMH) measurements onto the linear fit (data not
shown). Since means and variances add when summing
independent random variables, the linearity of both the
mean and the variance of AMH in the number of follicles
suggests that each follicle produces AMH independently
from interactions with other follicles. (The small but non-
zero intercept could arise if some pre-antral follicles do not
mature sufficiently to be retrieved during the IVF retrieval
procedure.) By contrast, the mean E2 is not linear in Eggs,
systematically deviating from linearity and having an inter-
cept that is far from zero (figure 4c; variance in panel d).
These variations from linearity show that the E2 is not pro-
duced independently by each follicle, perhaps due to
additional production from outside follicles (such as by adi-
pose tissue or the adrenal glands), due to inter-follicle
feedback, or simply due to other factors that affect E2
production, such as those shown in figure 3a.

2.4. Pre-implantation development
Once the oocyte is fertilized, the resulting embryo starts to
divide. By the third day after fertilization, a human embryo

typically has eight cells. As its cells continue to divide,
on the fifth day the embryo differentiates into a blastocyst,
composed of two distinct cell lineages: the trophectoderm
and the inner-cell mass. In natural development, the blasto-
cyst then attaches to the woman’s endometrial epithelium
and implants in her uterus [10,12,30,50]. In the IVF clinic,
human embryos are typically cultured for 3 or 5 days after
fertilization, at which point embryologists attempt to select
the highest quality embryo(s), which is then transferred into
the patient’s uterus.

We first examine the overall trajectory of development, as
described by three variables: the number of cells in the
embryo on Day 3 after fertilization (Day 3 Cells), its develop-
mental stage on Day 5 (Day 5 Stage), and whether it resulted
in a fetal heartbeat after transfer (FH; see electronic sup-
plementary material, SI for details). Day 5 stage is scored
from 1 to 9: (1) degenerate or arrested; (2) morula with incom-
plete compaction, (3) morula with complete compaction, (4)
early blastocyst, (5) expanding blastocyst, (6) full blastocyst,
(7) expanded blastocyst, (8) hatching blastocyst and (9)
hatched blastocyst.

However, not all embryos are cultured to Day 5, and
thus not all embryos have data on both Day 3 and Day 5:
of the 55350 embryos recorded on Day 3, only 41932 are
also recorded on Day 5. Since the decision to culture embryos
to Day 5 is made based on patient prognosis and embryo
quality, embryos that are assessed on Day 5 systematically
differ from those that are not. To avoid biases due to this
missing data, we treat missingness as an additional variable
and model both the variable and its missingness [51]. The
clinical data are in the ‘missing at random’ regime, where a
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Figure 4. (a) AMH versus Eggs. Grey dots show raw data, red circles show
the mean and standard error of AMH binned at each value of Eggs and green
line shows the best linear fit to the data, with slope of 0.20 £ 0.01 and inter-
cept 0.36 £0.11. A linear fit is the best-fit polynomial to the data, as
determined by the model evidence. (b) Variance and error estimate of
AMH versus Eggs, trimmed to the central 95% for each value of Eggs (red
dots, errors calculated using the variance of the k-statistic). The green line
shows the best linear fit to the variance, with a slope of 0.28 + 0.01 and
intercept —0.22 +0.03. () E2 versus Eggs. The green line shows the best
linear fit to the data. A quadratic model (not shown) provides the best fit
to E2 versus Eggs. (d) Variance and error estimate of E2 versus Eggs, trimmed
to the central 95% for each value of Eggs.

variable’s missingness depends on other variables in the
dataset, but not on the missing variable itself. In the language
of probabilistic graphical models, there are edges from some
of the normal variables to the missingness variables, but no
edge from a variable to its own missingness. In this regime,
valid inferences require conditioning on missingness and
the variables on which the missingness depends. Multiple
transfers cause an additional problem for the measurement
of fetal heartbeat—if two embryos are transferred simul-
taneously and one fetal heartbeat is observed, it is not
obvious which embryo formed the fetus. We solve this pro-
blem via generative modelling. Briefly, we construct a
parameterized model that predicts the probability of one
embryo implanting from properties of the embryo and the
woman. We then fit the model to the data by finding the
maximum a posteriori parameters, using a Poisson-binomial
likelihood for multiple transfers. To check whether a variable
is conditionally independent of fetal heartbeat, we fit two
models, one with the additional variable and one without,
and perform Bayesian model selection to see if the additional
variable is necessary (electronic supplementary material, SI
§1). We include all available cycles with four or fewer
embryos transferred (95% of cycles).

With this approach, we construct a model of human
pre-implantation development. The embryo’s number of cells
on Day 3 is strongly correlated with its stage on Day 5: Corr
(Day 3 Cells, Day 5 Stage [both measured) = 0.44 (p <107,
figure 5a). Both the embryo’s Day 3 Cells and its Day 5 Stage
are individually predictive of fetal heartbeat (figure 5b,c),
as appreciated in the literature [52-54]. However, when
considered jointly, only Day 5 stage is predictive of fetal

heartbeat; Day 3 Cells provides no additional informa-
tion whether the embryo will develop (figure 5d4). This
conditional independence implies a model of the form
Day 3 Cells — Day 5 Stage — FH; this is the only graph with
two or fewer edges that is consistent with the data and the fact
that Day 3 happens before Day 5.

How do the woman’s age, her BMI and the aggressiveness
of the ovarian stimulation additionally affect her embryos’
development? The woman’s age affects all stages of her
embryos’ development, being weakly correlated with the
embryo’s number of cells on Day 3 and its stage on Day 5:
Corr(Day 3 Cells, Age)=-0.07 (p=10""; electronic sup-
plementary material, figure S6a), Corr(Day 5 Stage, Age|
Day 3 Cells, measured) = —0.11 (p=10""%; electronic sup-
plementary material, figure S6b), and having a strong effect
on the probability that an embryo forms a fetal heartbeat (elec-
tronic supplementary material, figure S7c). Surprisingly, the
woman’s BMI affects none of Day 3 Cells (electronic sup-
plementary material, figure S6c), Day 5 Stage (electronic
supplementary material, figure S6d) or FH (electronic sup-
plementary material, figure S7e). Likewise, the conditional
correlation of MII with all of D3 Cells, D5 Stage and FH
is either consistent with zero or less than 0.05 in magnitude
(electronic supplementary material, figures Sée,f and 7f). Com-
bined, these observations yield the simple graphical model for
development in figure 5e. The woman’s age determines the
embryo’s cell number on Day 3; her age and the embryo’s
cell number on Day 3 determine its stage on Day 5; and her
age and the embryo’s stage on Day 5 determine whether it
will continue to develop. Neither the patient’s BMI nor the
number of retrieved MII eggs significantly affect the embryo’s
development. By contrast, the data’s missingness shows a
much more complex distribution, with almost all variables
affecting the clinical decisions regarding embryo transfer and
culture duration. Once again, the data paint a picture of
simple biology but complex clinical decisions.

That Day 3 Cells has no direct effect on the fetal heartbeat
probability is particularly striking. The time-varying mor-
phology (morphokinetics) of human embryos is known to
be predictive of developmental success [30,53]. In principle,
morphokinetics up to Day 3 could provide a different set of
information than morphokinetics between Days 3 and 5.
For example, since the embryo’s genome activates on Day 3
[55], one might reasonably propose that the embryo’s pro-
gress before Day 3 provides information about the ooplasm,
that the embryo’s progress from Day 3 to Day 5 provides
information about aneuploidy, and that both of these factors
independently determine the embryo’s prognosis. Instead,
the data show that the embryo’s stage at Day 5 contains all
the information about its viability that its cell number at
Day 3 contains.

One physiological interpretation consistent with the data
is that there are two distinct sets of mechanisms that influence
an embryo’s development (figure 5f). One set of mechanisms
influences pre-implantation development only through its
overall rate, including the number of cells on Day 3 and the
stage on Day 5. This set of mechanisms depends weakly on
age. Another set of mechanisms influences an embryo’s
post-implantation developmental potential and depends
strongly on age. Perhaps surprisingly, meiotic aneuploidy of
the oocyte cannot strongly affect pre-implantation develop-
ment, since meiotic aneuploidy is strongly associated with
the woman’s age. Instead, the data suggest that meiotic
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Figure 5. (a) Day 5 Stage versus Day 3 Cells. Grey dots show the raw data, red circles show the mean Day 5 Stage for each separate value of Day 3 Cells, the green
line and shaded region show the nonlinear model with the highest evidence and its uncertainty. The Day 5 Stages are: (1) degenerate or arrested, (2) morula with
incomplete compaction, (3) morula with complete compaction, (4) early blastocyst, (5) expanding blastocyst, (6) full blastocyst, (7) expanded blastocyst, (8) hatching
blastocyst, and (9) hatched blastocyst (see electronic supplementary material, §2 for details). (b) Estimated probability of an embryo resulting in a fetal heartbeat
(FH) as a function of Day 3 Cells alone, for embryos recorded on Day 3 and transferred. The red circles and error bars show the probability estimated by a model that
fits an independent probability of implantation for each number of cells; the green line and shaded region shows the nonlinear model with the highest model
evidence and its uncertainty. () The estimated probability of FH as a function of Day 5 Stage alone, for embryos recorded on Day 5 and transferred. (d) The logit of
the estimated probability of FH as a function of Day 3 Cells, after regressing against Day 5 Stage. Red circles and error bars show the additional log probability
estimated from a model that fits an independent logit for each value of Day 3 Cells; green line shows the best linear model and uncertainty for the logit. The data
are consistent with Day 3 Cells having no additional predictive power on FH once Day 5 Stage is known. (e) The graph with the minimal number of edges that is
consistent with the data and a mechanistic interpretation. Black nodes and arrows show the measured data; grey nodes and arrows show the data’s missingness.
Only the arrow Age — BMI can be re-oriented without breaking consistency with the data or a mechanistic interpretation. Edge labels for continuous variables are
conditional correlation coefficients (roman typeface). Edge labels for discrete variables are coefficients from logistic regression (italic typeface), after treating the
effects of other variables with edges into the discrete variable and after normalizing the input variable by its mean and standard deviation. The missingness
variables D5 Rec. and Trans. are 1 if the embryo is recorded on Day 5 or transferred, respectively, and 0 otherwise. The distribution of Trans. changes depending
on whether Day 5 Stage was recorded; the two labels on edges into Trans correspond to Day 5 Stage missing or recorded. (f) The data are consistent with a picture
where processes which control pre-implantation development are largely different from those which control post-implantation development.

aneuploidy primarily affects post-implantation, rather than
pre-implantation, development. Other works have provided
mixed evidence regarding the extent to which aneuploidy
affects pre-implantation development [56-59].

Is development genuinely this simple, or is this apparent
simplicity an artefact of the variables we chose to describe the
embryo? In addition to the number of cells, the dataset also
describes the embryo on Day 3 with the presence of cyto-
plasmic fragments, the presence of multiple nuclei in
individual cells, size asymmetries among cells within the
embryo, the presence of large vacuoles, and the granularity
of the cell cytoplasm. On Day 5, the dataset also includes
grades of the inner-cell mass and the trophectoderm, for
embryos that have formed blastocysts. Of the Day 3 variables,

embryo fragmentation and cell symmetry are predictive of
fetal heartbeat, along with Age and Day 3 Cells. Likewise,
of the Day 5 variables, the trophectoderm grade is predictive
of fetal heartbeat, along with Age and Day 5 Stage, in agree-
ment with recent studies [60,61]. (The data are consistent with
the other Day 3 variables providing no additional predictive
power once Age, D3 Cells, symmetry, and fragmentation are
known; and the data are consistent with the inner-cell mass
grade providing no additional predictive power once Age,
D5 stage and the trophectoderm grade are known.) Neverthe-
less, the Day 3 variables provide no additional predictive
power for fetal heartbeat once the Day 5 variables are
known (electronic supplementary material, §4). These obser-
vations suggest a memoryless model of pre-implantation
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development: provided the embryo makes it to the blastocyst
stage, what happened before is irrelevant for its viability.
Thus, despite the molecular complexities of early develop-
ment and the complicated trajectory of human development
before 12 weeks, a simple, phenomenological view of
embryonic viability may be possible without sacrificing
quantitative accuracy.

3. Conclusion

Here, we have used clinical IVF data and minimal prior
knowledge to infer quantitative, phenomenological models
of human oogenesis and embryogenesis. Not only does
constructing these models with a data-driven approach give
confidence in their validity, but the models recapitulate
known aspects of oogenesis and embryogenesis. Surprisingly,
the models that best describe the data are sparse, with
only one or two factors affecting most physiological pro-
cesses. This suggests that oogenesis and embryogenesis
are modular processes. Our analysis leads to three additional,
surprising conclusions which support this overall picture
of modularity.

(i) AMH production by one pre-antral follicle is indepen-
dent of the amount produced by others. This is in
stark contrast to other follicularly produced hor-
mones. Hormones such as oestradiol and inhibin
participate in feedback loops which regulate the
formation of the dominant follicle in a natural cycle.
As a result, these hormones are produced in a highly
regulated manner, and not independently by each
follicle [30,62]. Moreover, mathematical modelling
suggests that, for these feedback loops to function,
the hormone production and response needs to be
highly nonlinear [63-65]. Thus, the amount of these
hormones produced by one follicle depends strongly
on the amount produced by other follicles. By con-
trast, AMH appears to be produced without
regulatory feedback. This is particularly interesting
because AMH regulates the follicle number, by regu-
lating the growth of primordial follicles into primary
(pre-antral) follicles. Thus, while feedback loops are
needed to accurately control the number of mature fol-
licles recruited during natural ovulation, feedback
loops appear to be unnecessary to sufficiently control
the number of primary follicles recruited.

(i) Neither age, obesity, the ovarian stimulation, nor even
the number of recruited oocytes affects whether an
individual oocyte progresses to metaphase-Il once
triggered to resume meiosis. These observations have
several implications for the biology of the oocyte.
Definitive evidence shows that age is strongly corre-
lated with aneuploidy in the oocyte [27,39]. Since
our analysis shows that the ability of an oocyte to pro-
gress to metaphase-Il is independent of age, we
conclude that this ability is the same for both euploid
and aneuploid oocytes. Thus, the spindle assembly
checkpoint in human oocytes must be weak, in agree-
ment with recent experimental work [45—47]. A similar
argument can be made regarding the effect of metab-
olism on meiosis. Evidence suggests that oocyte
mitochondrial metabolism worsens with increasing

obesity [29,66]. Since oocytes progress to metaphase-
II independently of obesity, metabolic defects must
not typically be enough to stop an oocyte from
progressing from prophase-I to metaphase-II.

(iii) Early embryonic development is memoryless, in that
embryos with the same status on Day 5 develop the
same, regardless of their status on Day 3. This mem-
orylessness is reminiscent of the robustness of early
mammalian embryos to damage to individual cells
[67-69]; however, memorylessness is more than
robustness. Robustness signifies that an embryo can
recover from a setback. Memorylessness signifies
that, once recovered, neither the setback nor what
caused it has any impact on the rest of development.
The memorylessness implies a modularity and robust-
ness in development, similar to previous proposals for
modularity in cellular biology [70].

The models we present also have implications for clinical IVF.
For embryos transferred on Day 5, embryo selection can be
based solely on how developed they are on Day 5, indepen-
dent of their status on Day 3. While Day 3 information is
correlated with implantation potential, the effect is completely
captured by the embryo’s status on Day 5. For ovarian stimu-
lation, the data provide no evidence that aggressive ovarian
stimulation is detrimental to the oocyte, either in its ability
to mature to metaphase II, to develop as an embryo, or, if
transferred, to form a viable pregnancy (figures 3 and 5); more-
over, the data constrain any of these effects to be small. Thus, a
clinic should not be concerned about a potential trade-off
between the quality and quantity of retrieved oocytes. Conver-
sely, the data show that, at the clinic from which our data were
derived, the ovarian stimulation drugs FSH and HMG are
typically applied at saturating or slightly deleterious doses
for follicular recruitment. Thus, the hormone dosage could
presumably be slightly reduced here, to mitigate side effects
such as ovarian hyper-stimulation syndrome or the high cost
of stimulation drugs, without a large decrease in the number
of retrieved oocytes.

The results we present here are inferred using data from
only one clinic. As such, some aspects of our models reflect
the practice at one particular clinic rather than general biology.
The treatment portions of the models, such as FSH and HMG
doses, transfer decisions and missingness, will change from
clinic to clinic. Likewise, properties of the patient population,
such as the joint distribution of patient age and BMI, will pre-
sumably change from clinic to clinic. By contrast, we suspect
that the broader, structural relationships among hormones,
oocytes and embryos reflect general biology that will be
broadly applicable, although varying measurement standards
across clinics may cause quantitative changes in these relation-
ships. It will be interesting to test our models by looking at
data both from other, non-clinical sources and from IVF clinics,
especially from other countries.

More broadly, our results provide fundamental insights
into the overall process of development. Unlike the sparse-
ness that arises in theoretically motivated models simply as
a way to manage complexity, the sparseness in our models
is a property of the data. This sparseness implies that the
biology itself is simple, consisting of modularized processes
that are quantitatively siloed from one another. The simpli-
city is surprising given the many ways that oogenesis and
embryogenesis are affected by diseases, including age-related
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infertility, endometriosis, sperm malfunction and polycystic
ovary syndrome, all of which are present in our dataset.
Overall, our results suggest that, despite their underlying
complexities, oogenesis and embryogenesis are modular
processes that result in simple, emergent behaviour and
that a concise, quantitative understanding of the rest of

development may be possible.

Data accessibility. Data are available at https://doi.org/10.6084/m9.fig

share.15153525.
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1 Inference and Regression Methods

1.1 Regressions

We perform nonlinear regression on the data by finding the polynomial model that maximises the Bayesian posterior
model evidence. We do this in three steps, following the approach outlined in ref. [1]. First, we assume a class of
probabilistic models for the data. For each model from the class, we then find the model parameters that maximise
the posterior probability, given the model. Finally, we use these model regressions to evaluate which model has the
highest posterior probability. In practice, this procedure depends on the choice of model parameterization and the
choice of prior for the models and the parameters. We use two separate classes of probabilistic generative models
when performing these regressions, one for regressing continuous data and one for regressing discrete data.

For continuous data, we use the following class of probabilistic models for the data. First, we scale both the
dependent and regressor variables by their mean and standard deviation, such that they are mean 0 and variance 1.
Next, we model the dependent variable as a function of the regressor variables, plus additive i.i.d. Gaussian noise
of mean 0 and variance o?: y; = f(2ij;0a) + €, where 6, are the parameters of the model. We fit both the model
parameters and the noise standard deviation o. We place a log-normal prior on the noise standard deviation, with
mean parameter 0 and variance parameter 1. For z univariate, we choose Chebyshev polynomial series as the class
of models. For z multivariate, we take f(z;;) = >_; Cj(z;), where Cj is a Chebyshev series in each of the dependent
variables. For both cases, we place priors on the coefficients as normal distributions with mean 0 and variance 1.
As Chebyshev polynomials take values between 0 and 1 when the dependent variable is between 0 and 1, this model
with this set of priors corresponds to assuming that y(x) varies by roughly one standard deviation when x varies by
roughly one standard deviation, with the stochastic and deterministic variation in the data being comparable to one
another. Combined, the posterior probability of the model parameters given the model and the data is

2
p(0a, oly, @;m) < [ | \/21—2 X exp (—; (MW) ) X
i Yi¥ea o
1 62
H \/%exp <2“> X (1)

e ()

where m indexes the model, z;;,y; are the regressor and dependent variables for each datum, and f is a sum of
Chebyshev series in each separate, scaled variable with coefficients 6,. The first term corresponds to the likelihood,
the second the priors on the model parameters, and the third the prior on the noise standard deviation. Including
the terms 1/v2m0? in the likelihood ensures that the noise level fits to the correct value; the prior on the noise level
has little effect on the model fitting.

For regressing discrete data, such as the missingness of a variable or the probability of a fetal heartbeat after
transfer, we take a similar approach, but model the probability of success as a Bernoulli trial. We take the probability




logit to be the same class of functions as before, i.e. the probability per trial is p = 1/(1 4 exp(—f(xij,0a))) where
f is a sum of Chebyshev series in each separate, scaled variable.

Given a model from this class of models, we then fit the model’s parameters from the posterior, by taking
the model’s maximum a posteriori parameters as point estimates and approximating the errors using a Laplace
approximation on the posterior.

After the models have been fit, we perform model selection as outlined in ref [1]. We use a Laplace approximation
to evaluate the probability of each model as

p(mly, @) = p(y|x, 65, m) x p(6%|m) x det (A/2r) /> @)

where p(y|x, 0%, m) is the likelihood, p(0|m) is the prior distribution, 87 are the maximum a posteriori parameters,
and A = —VVp(0,|y, z;m) is the inverse of the parameters’ covariance matrix. This procedure is related to the
Bayesian Information Criterion [3]; the Bayes Information Criterion is an asymptotic approximation of this procedure
in the limit of infinite samples. Qualitatively, the model selection combines two contrasting pieces of information:
how well the model fits the data, and how fine-tuned the model’s parameters need to be to describe the data. More
complex models will in general fit the data better (i.e. have a higher likelihood), but will in general need more
fine-tuning of their parameters (i.e. have a smaller determinant of the covariance matrix).

Since there are an infinite number of models in the space of models that we have assumed, we cannot fit all
possible models and choose the one with the highest posterior probability. Instead, we search for the most probable
model as follows. For univariate models, we exhaustively check all polynomial orders up to 810 and select the best
model found, which is always less than the highest polynomial order checked. For multivariate models, we use the
following heuristic search. Each point in the model space can be represented by a tuple of integers, with each integer
representing the polynomial degree for the corresponding independent variable. To find the most probable model,
we start by fitting the data to a quadratic in each variable. We then iteratively proceed by taking the best model
found so far, increasing or decreasing one of the polynomial degrees individually, and re-fitting the model. If neither
increasing nor decreasing any of the polynomial orders results in a better fit model, the algorithm terminates the
search. For instance, when fitting MII to both Eggs and E2, the algorithm starts by fitting a second-order polynomial
in both MII and E2, which can be represented by the point (2, 2).

The algorithm then checks the models (1, 2), corresponding to a model which is linear in Eggs and quadratic in
E2, and finds that it is more probable than (2, 2). Next, the algorithm checks the point (0, 2). This is not more
probable than (1, 2), so the algorithm proceeds to check the point (1, 1), which is linear in both Eggs and E2. This
model is the most favored. The algorithm then checks the points (0, 1) and (1, 0), and finds that they are not favored
over (1, 1). At this time, every point adjacent to the best point found so far has been checked, so the algorithm
terminates, returning (1, 1) as the most likely model.

In practice, this process results in excellent fits to the data with well-defined model orders. We illustrate this
with the regression of Eggs on AMH, shown in Fig. 1. Panel a shows the model probability and model likelihood as a
function of the polynomial degree. The model likelihood continues to increase as the polynomial degree increases. In
contrast, the model log-evidence attains a maximum at a fourth-degree polynomial; models with higher polynomial
degrees require an unfavorable fine-tuning of parameters. Transforming these log-evidences to model probabilities
gives a single model that is strongly preferred, with a probability of 97.4%, as shown in panel b. To check how well
this process fits the data, we separate the raw data into bins and plot the bin averages as red circles in Fig. ?77c.
The maximum-evidence model visually fits the data the best, as illustrated by panel c. That the maximum-evidence
model fits the data well show that our choices for the space of models and the priors on model coefficients are sufficient
to accurately fit the data. Additional comparisons of the maximum-evidence models can be seen in Main Text Fig.
1b,c, Main Text Fig. 5a, & SI Fig. 5a for regression with a Gaussian likelihood, and in Main Text Figures 5b-d & SI
Fig. 6a,g for regression with a Poisson-binomial likelihood; in all cases the maximum-evidence model correctly fits
the data. The regression process described above also performs accurately on generated data. For data generated
with a linear model, this formalism identifies a linear model as the one that best fits the data. Likewise, for data
generated with a quadratic model, the formalism identifies a quadratic model as best fitting the data. We implement
these two as unit tests for our regression framework.

The results of the analyses in the main text are broadly robust to conditioning via this nonlinear regression vs
a linear regression, although we do see some differences. One noticeable difference is in the graph in Fig. 3 in the
main text. When we regress Eggs nonlinearly on AMH and HMG, we find that FSH is uncorrelated with Eggs,
corresponding to a physiological regime where roughly all possible follicles are recruited by FSH. In contrast, condi-
tioning using linear regression only gives a conditional correlation of FSH and Eggs that is statistically significantly
negative, corresponding to a physiological regime where increasing FSH results in fewer recruited follicles. This
apparent negative correlation arises because the mean of Eggs is increasing but concave-down as a function of AMH,
whereas the mean of FSH is decreasing but concave-up as a function of AMH. As a result, linearly regressing on
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Figure 1: (a) The log-likelihood (blue) and log-evidence (orange) for polynomial models of degree 0-9, for regressing
Eggs vs AMH. (b) The corresponding model probabilities. (c¢) The resulting regressions. Green line: maximum
a-posteriori model, corresponding to a fourth-order polynomial. Gray lines: regressions corresponding to the models
of other order. Red dots and error bars: mean + standard error of Eggs vs AMH, after binning into 40 bins with
equal counts per bin. The maximum a-posteriori model captures the nonlinearities in the data without overfitting.
Compare to SI Fig. 4, which shows the maximum a-posteriori regression with the raw data for Eggs vs AMH.

AMH overestimates Eggs and underestimates FSH when AMH is low. Since the distribution of AMH is skewed,
taking the correlation coefficient of these biased residuals then gives a negative correlation.

1.2 Estimating Fetal Heartbeat Probabilities

To estimate the probability of an embryo implanting, we use a forward (or generative) model and a Bayesian approach.
We assume some class of models, each of which provides a probability of each embryo to develop sufficiently to provide
a fetal heartbeat. We then use Bayes theorem to re-cast the probability distribution of fetal heartbeats, given both
the model parameters and the number of embryos transferred, into a posterior distribution of the parameters given
the measured number of fetal heartbeats and known number of embryos transferred, following the same approach
outlined for the continuous regression. Here, we explain in the forward model for fetal heartbeats in more detail.

In each cycle, n embryos are transferred that result in A measured fetal heartbeats. We assume that each embryo
has a probability p. of leading to one fetal heartbeat, and a probability 1 — p. of providing no fetal heartbeat,
where the subscript e denotes the which embryo. For simplicity, we ignore the possibility of a single embryo forming
monozygotic twins, which demographic data suggests should be a 1% correction. For the few cycles that do have
more fetal heartbeats recorded than embryos transferred, we treat every embryo as successfully implanting. Then
the probability p(h|n, {p.}) is given by a Poisson-binomial distribution. For instance, if two embryos were transferred
and one heartbeat was observed, then

ph=1n=2{pe}) =p1(1 —p2) + 1 = p1)p2 3)

where the subscript e indexes embryos and the subscript ¢ indexes cycles.
The data is a collection of many treatment cycles, each with n. embryos transferred and h. fetal heartbeats
measured. We treat each cycle as an independent event, and therefore the probability of the observed data is

p({hct{nch, {pec}) = Hp(hcmcv{pe}C) (4)

where each p(h|nc, {pe}e) is a Poisson-binomial distribution.

To proceed further, we assume a functional form for the implantation probabilities p... Each embryo has some
associated parameters .. with it, such as the number of cells on day 3, the stage on day 5, the age of the woman,
etc. We assume that the probability of forming a heartbeat depends on the parameters with some functional form
f, which we parameterise with some set of parameters 6,: pec = p(€ec, o). Substituting this into equation 4 allows
writing of the probability of the forward model in terms of the (unknown) model parameters 6, and the (known)
embryo parameters x..:

p({he}{ne} 0o {zec}) = [ [ plhelne, {p(xe; ba)}e) (5)



We then fit the data with two types of models: smooth, low-dimensional models containing a few number of param-
eters, and with “model-independent” models that do not assume underlying smoothness of the functional form of
p(xec). For the low-dimensional models, we use the same approach as described earlier, parameterizing the logits
with a Chebyshev series in the scaled input variables. For the model-independent approaches, we define p(x;6,)
as a piecewise-constant function over a series of intervals, by setting the parameters 8, to the probability logits on
each interval. For example, to calculate a model-independent measure of the probability of an embryo implanting
given its day-5 stage, we assign one probability of implanting to all stage-1 embryos, another probability for stage-2
embryos, etc. For model-independent measures of the effect of age and BMI on embryo implantation potential, we
bin the variables into separate intervals and assign the same probability to each interval; we choose the intervals to
contain the same number of embryos (so the intervals are not of equal width). We place a prior on the logits that
corresponds to a flat prior of the probabilities (p(¢) = sech?(¢/2)/4, where £ is the logit). While this prior on the
logit corresponds to a uniform prior for the fitted probability, this prior does have a maximum and therefore shifts
the posterior maximum slightly from the maximum likelihood value. The low dimensional models should balance
out variance and bias tradeoff; the model-independent models should be higher variance but do not make any as-
sumptions about smoothness and therefore should have lower bias. These two models are plotted as the green lines
and red dots, respectively, in Fig. 5 in the main text and in Fig. 6 in the SI.

After fitting the models, we perform Bayesian model selection, following the same formalism as described above
for the regression models. To perform this model selection on day-3 vs day-5 variables, we only use the cycles that
have data recorded for both day-3 and day-5. In principle the day-3-only cycles contain information about model
selection, but to avoid subtleties due to other confounders we ignore these when performing model selection. In
addition, we also limit the data to cycles with 4 or fewer embryo transfers (roughly 90% of the cycles with transfers),
to avoid possible confounders when many embryos are transferred.

This approach for estimating the probability of fetal heartbeat assumes that embryos implant independently of
one another in multiple transfers. We check this assumption by performing additional regressions with the number of
transferred embryos as a variable. The regression results are consistent with multiple transfers systematically neither
helping nor hurting the chance of an individual embryo to implant, as shown in SI Fig. 6g-h. While embryos that are
part of a multiple transfer are much less likely to implant than those in a single transfer (panel g), this relationship
disappears after controlling for the patient’s age and the embryo’s stage on day 5 (panel h).

1.3 Constructing DAGs

To construct the directed acyclic graph, we tailor our approach using prior knowledge of the data, rather than
using more general algorithms that are agnostic to prior knowledge. One such agnostic algorithm for constructing
directed acyclic graphs is the inductive-causation (IC) algorithm. The IC algorithm proceeds in three steps. In
the first step, one draws a fully connected, undirected graph, then removes any edges A—B if there is any set of
variables C such that A and B are conditionally independent given C. Once the undirected graph is constructed,
then edges are oriented based on the presence of colliders [2]. This algorithm is guaranteed to produce a directed
acyclic graph consistent with the data. We find that an IC algorithm does not perform well on the our dataset. The
naive application of an IC algorithm constructs graphs that are physiologically nonsensical, presumably due to the
finite statistical power we have in identifying whether two variables are conditionally independent. As an illustration
from the data, consider the three variables Age, BMI, and E2. As discussed in the text, Age and BMI are weakly
correlated, Corr(Age, BMI) = 0.07, and BMI and E2 are weakly negatively correlated, Corr(BMI,E2) = —0.11.
However, Age and E2 appear uncorrelated, given nothing: Corr(Age,E2) = —0.02 (P = 0.34). An IC algorithm
would suggest drawing the graph with the edges Age — BMI and E2 — BMI, suggesting that the patient’s maximum
estradiol concentration recorded during an IVF treatment is what determines whether or not she is overweight. This
is especially absurd as some patients have multiple treatment cycles with different recorded E2 but the same BMI.
Presumably, the apparent conditional independence between Age and E2 would disappear if much more data was
collected. To avoid these types of difficulties, we enforce some prior knowledge in the structure of the directed acyclic
graph, although we keep the prior knowledge to the minimum to minimise confirmation bias. Similar problems apply
to using a LASSO approach to construcing the directed acyclic graphs.



2 Data description

The clinicians score embryos on day 3 and day 5 according to the following procedures:

Day 3 Cells: The number of cells on day 3.

Day 3 Fragmentation: The volume percent of the embryo occupied by fragments, scored as 0%, 1-10%,
11-25%, 26-50%, and >50%.

Day 3 Multinucleation: Scored as 1 (at least 1 blastomere has more than 1 nucleus) or 0 (otherwise).

Day 3 Symmetry: Scored as 1 (perfect symmetry), 2 (moderately asymmetric), or 3 (severely asymmetric).

Day 3 Vacuoles: Scored as 0 (no vacuoles) or 1 (has vacuoles).

Day 3 Granularity: Scored as 0 (not granular) or 1 (granular).

Day 5 Stage: Scored from 1-9, as

1. Degenerate or arrested; the embryo failed to develop to the morula stage.
2. Morula, with incomplete compaction (less than 50% compacted).

3.
4

. Early blastocyst, where the blastocoele is less than half the volume of the embryo, with little to no

Morula, with more than 50% of the embryo compacted, but no blastocyst formation visible.

expansion in the embryo’s volume. The zona pellucida has not started thinning.

Expanding Blastocyst, where the blastocoele occupies more than half the embryo’s volume, with some
expansion in the embryo’s size and the zona pellucida starting to thin.

. Full blastocyst, where the blastocoele completely fills the embryo but the zona pellucida has not completely

thinned.

Expanded Blastocyst, where the blastocoele completely fills the embryo, which has fully expanded. The
zona pellucida is very thin.

8. Hatching Blastocyst, where the trophectoderm is starting to herniate through the zona pellucida.

9. Hatched Blastocyst, where the blastocyst is completely hatched out of the zona pellucida.

e Day 5 ICM: Scored as a grade from 1-4, with

1.

2.
3.
4.

ICM (inner cell mass) prominent and easily discernible, with many cells that are compacted and tightly
adhered together.

ICM discernible, but with fewer cells, and loosely adherent together.
Very few cells visible, either compacted or loose. ICM cells be difficult to distinguish from trophectoderm.

No cells visible in the ICM, or all cells are degenerate or necrotic.

This is only scored for blastocysts (i.e. stage 5 and above).

e Day 5 Trophectoderm: Scored as a grade from 1-4, with

1.
2.
3.
4.

A continuous layer of small, uniform, eye-shaped cells bordering the blastocoele.
Fewer, larger cells that may not form a continuous layer.
Sparse trophectoderm cells, which may be large.

All trophectoderm cells are degenerate.

This is only scored for blastocysts (i.e. stage 5 and above).

In addition, below we provide a list of all the variables describing both the ovarian stimulation and the development
of the resulting oocytes, along with the percentage of cycles and oocytes for which those variables are recorded. In
addition to the variables listed below, there are additional variables not listed that assist in linking oocytes to cycles.



Variable Name

% recorded, cycles

% included, oocytes

Notes

Cycle Code
Patient Code
Cycle Type

Date of Cycle Start
Date of Retrieval
GC

Patient Age
Producer Age
Producer BMI
Carrier BMI
Producer Race
Gravidity

Parity

Prior SAB

Prior TAB

AMH

Day3 FSH

Day3 E2

Fresh Stim Protocol
CET cycle type
Prog Type

CET with lupron
HMG

FSH

Baseline Endo
E2 Max Day

E2 D02

E2 D03

E2 D04

E2 D05

E2 D06

E2 D07

E2 D08

E2 D09

E2 D10

E2 D11

E2 D12

E2 D13

E2 D14

E2 D15

E2 D16

E2 D17

E2 D18

E2 D19

E2 D20

E2 D21

E2 D22

E2 D23

E2 D24

E2 D25
Ovulatory trigger
Dose of hCG trigger(IU)
Dose of lupron trigger
Dose of ovidrel trigger

100.0
100.0
100.0
0.0
0.0
100.0
100.0
100.0
98.7
88.3
70.7
100.0
55.4
55.4
55.4
60.3
62.8
62.0
68.1
31.8
91.0
31.1
68.2
68.2
67.2
68.2
14.0
0.1
0.0
0.1
3.8
62.9
26.5
50.0
36.5
42.0
29.3
21.7
12.8
7.8
4.3
2.4
1.6
1.0
0.8
0.4
0.3
0.2
0.2
0.1
67.8
49.7
13.5
14.1

100.0
100.0
100.0
0.0
0.0
100.0
100.0
100.0
99.6
78.7
99.8
100.0
50.6
50.6
50.6
67.6
89.6
88.4
99.7
0.2
85.4
0.2
99.8
99.8
98.2
99.8
21.4
0.1
0.0
0.2
6.8
91.3
46.4
76.2
59.7
65.4
43.3
29.0
15.5
8.9
4.5
2.3
1.6
1.0
0.8
0.5
0.3
0.3
0.2
0.2
99.2
72.0
29.1
17.5

An anonymous code specific to each cycle
An anonymous code specific to each patient
fresh or frozen cycle

Whether a gestational carrier was used

The age of the woman seeking treatment

The age of the woman providing oocytes
Body-mass index of the woman seeking treatment
Body-mass index of the woman providing oocytes
Race of the woman providing oocytes

Number of previous pregnancies

Number of previous deliveries

Number of prior spontaneous abortions

Number of prior therapeutic abortions

“AMH” in main text

Serum FSH on Day 3 of a natural cycle

Serum estradiol on Day 3 of a natural cycle
Antagonist, agonist, etc

if the frozen transfer was hormonally controlled
Progesterone

Whether lupron was used in the frozen cycle

Endometrial thickness at fresh cycle start
The day that the max E2 was achieved
The E2 measurment on Day 02 etc of the cycle



Variable Name % recorded, cycles | % included, oocytes | Notes

Day Ovulatory Trigger 68.1 99.8

Trigger E2 67.4 98.6 E2 on the day of ovulatory trigger
USEndo 67.2 98.5 Endometrial thickness on day of ovulatory trigger
Num>18 67.9 99.4 Number of follicles >18 mm in diameter
Numl7 67.9 99.4 Number of follicles 17 mm in diameter
Num16 67.9 99.4 Number of follicles 16 mm in diameter
Num>12<16 67.9 99.4 Number of follicles between 12 and 16 mm
Prog Min 24.0 38.5 Min. progesterone level, fresh cycles

Prog Max 24.0 38.5 Max. progesterone level (ng/mL) in fresh cycles
E2 Max 68.2 99.8 “E2” in main text

Sum Eggs 68.2 99.8 “Eggs” in main text

Sum MII 68.2 99.8 “MIT” in main text

Sperm Origin 68.7 99.7 ejaculate, epididymis, testicular

Sperm Source 68.6 99.6 patient or donor

Sperm Fresh or Frozen 68.7 99.7

Sum Fert 68.2 99.8 Number of fertilized eggs

Transfer 100.0 100.0 Whether a transfer occured

Sum Transferred 100.0 100.0 Number of embryos transferred

Day of transfer 88.6 79.1 Measured from fertilization

ARTSite Result 99.9 100.0 Overall result of treatment

Days ET to HCG.1 88.0 78.2 Time from transfer to 1st hCG measurement
HCG.1 88.6 79.1 1st hCG measurement

Days ET to HCG.2 53.2 46.3

HCG.2 51.6 44.9

Days ET to HCG.3 44.6 37.2

HCG.3 44.6 37.2

Sacs Max 87.0 77.6

FH>12wk 86.0 77.4 “FH” in main text

# Babies (>24wks) 82.9 75.1

# Fetuses SR 45.6 49.3 number of fetuses selectively reduced

GA 29.3 25.3 Gestational age at delivery, weeks

Out fetusl 34.3 32.5 Outcome of fetus (live birth, stilbirth, etc)
Gender babyl 29.0 25.4

Wt babyl 28.9 25.3

Out fetus2 5.6 5.4

Gender baby2 5.2 5.0

Wt baby2 5.1 4.9

Out fetus3 0.0 0.0

Gender baby3 0.0 0.0

Wt baby3 0.0 0.0

DX Dim Ovar Rsrv 98.2 98.4 Patient diagnoses, boolean

DX Endometriosis 98.2 98.4

DX MaleFactor 98.2 98.4

DX Ovul dysf 98.2 98.4

DX Tubal disease 98.2 98.4

DX Unknown 98.2 98.4

DX Uterine factor 99.4 99.8

DX Other 98.2 98.4




Variable Name

% recorded, cycles

% included, oocytes

Notes

Generic Code — 0.0 An anonymous code specific to each oocyte
Donor Egg — 100.0 Whether the egg was from a donor

Fresh Fate — 100.0 Frozen, transferred, or discarded

Final Fate — 100.0 Frozen, transferred, or discarded

Variable Name % recorded, cycles | % included, oocytes | Notes

Fresh % O2 — 100.0 Culture oxygen percentage, pre-freeze
Post-thaw % O2 — 6.3 Culture oxygen percentage, post-freeze
Freeze Protocol — 19.2 slow or vitrification

Number of Freezes — 95.4

Day Freeze 1 — 19.2

Day Freeze 2 — 0.2

Day Transfer — 18.7

Stage at Retrieval — 100.0 Stage of the oocyte on retrieval

Fert Method — 100.0 IVF or ICSI

Fert HPI — 86.9 when the fertilization check was performed
Fert Status — 85.9 fertilization status of the embryo

Fresh D3 HPI — 56.0 when the Day 3 evaluation was performed
Fresh D3 Cnum — 55.9 “Day 3 Cells” in the main text

Fresh D3 Fragmentation — 55.9

Fresh D3 Symmetry — 55.9

Fresh D3 PMD — 55.3 whether cell membranes are clearly visible
Fresh D3 Granularity — 55.9

Fresh D3 Vacuoles — 55.9

Fresh D3 Multinucleation — 55.9

Fresh D5 HPI — 42.4 When the Day 5 evaluation was performed
Fresh D5 Stage — 42.3 “Day 5 Stage” in the main text

Fresh D5 ICM — 15.2 Inner-cell mass grade

Fresh D5 TE — 15.2 Trophectorderm grade

Fresh D5 St4 Quality — 8.5 Separate quality grade for early blastocysts
Fresh D6 HPI — 17.8 When the Day 6 evaluation was performed
Fresh D6 Stage — 17.8

Fresh D6 ICM — 5.9

Fresh D6 TE — 5.9

Fresh D6 St4 Quality — 2.8

Time 1st Frozen HPI — 17.7

Thaw D3 HPI — 1.8

Thaw D3 Cnum — 1.8

Thaw D3 Fr — 1.7

Thaw D3 Sym — 1.7

Thaw D3 Pmd — 1.7

Thaw D3 G — 1.7

Thaw D3 V — 1.7

Thaw D3 MNB — 1.7

Thaw D5 HPI — 4.6

Thaw 5 Stage — 4.6

Thaw D5 ICM — 3.5

Thaw D5 TE — 3.5

Thaw D5 st4 Qual — 0.6

Thaw D6 HPI — 1.1

Thaw D6 Stage — 1.2

Thaw D6 ICM — 0.7

Thaw D6 TE — 0.7

Thaw D6 st4 Qual — 0.1

% survival — 6.3 Fraction of the embryo that survived freezing
AH — 100.0 Whether assisted hatching was used
Biopsy — 60.9 Whether the embryo was biopsied




Variable Name % recorded, cycles | % included, oocytes | Notes

Biopsy Day — 2.9

Number Cells Biopsied — 2.8

TBR — 2.9 If the embryo was thawed, biopsied, then refrozen
PGT-gender — 1.9 Gender from genetic testing (PGT)
PGT-ploidy — 2.1

SGD — 1.1 Presence of single-gene defects

Translocation — 0.3

HLA matching — 0.1 A measurement of immunological compatibility
Xfer HPI — 18.6 Time of transfer

Day0 Embryol — 98.1 Anonymous ID of the fertilising embryologist
Fert Embryol — 86.8 ID of the embryologist checking fertilisation
D3 FrEval Embryol — 91.9 ID of Day 3 fresh evaluating embryologist
D3ThEval Embryol — 44.0 ID of Day 3 thawed evaluating embryologist
D5 FrEval Embryol — 11.5 ID of Day 5 fresh evaluating embryologist

D5 ThEval Embryol — 6.1 ID of Day 5 thawed evaluating embryologist
D6 FrEval Embryol — 6.1 ID of Day 6 fresh evaluating embryologist

D6 ThEval Embryol — 0.3 ID of Day 6 thawed evaluating embryologist
PGD Embryol — 3.8 ID of embryologist performing genetic testing
Transfer Embryol — 18.1 ID of embryologist performing transfer
Transfer MD — 18.0 ID of the doctor performing transfer

PGD Result — 0.0




3 Structural Equations corresponding to Models

3.1 Structural models for Ovarian Stimulation and Pre-implantation Development

As explained in Sec. 1.1, we assume that the data is normally distributed, with a constant standard deviation and
a mean that depends on the dependent variables. In reality, the data show strong evidences of heteroskedasticity
and non-normality, cf. Fig. 3 in the main text. Nevertheless these structural models give a reasonably accurate
description of the data.

The structural models for ovarian stimulation are calculated using a complete-case basis, since the missingness
patterns appears to be correlated with changing clinical practices over time and not with any of the variables. There
are 3422 cycles in the train set which have all of AMH, Eggs, MII, and E2 recorded, but 9 of these cycles are missing
at least one of Age, BMI, FSH, or HMG. These missing 9 cycles are responsible for the small difference in the
MIT structural equations between that for the 4-element model and the 8-element model. Differences between other
equations correspond to the effects of including other variables.

The structural models for pre-implantation development are calculated using all the data available for each
equation; as such, different embryos and cycles are used to model the effect of Age on Day 3 Cells than are used to
model Age on Day 5 Stage. In all these equations, Age is measured in years, BMI in kg / m?, E2 is measured in
pg / mL, and AMH is measured in international units (IU). The equations for FSH and HMG describe dosage in
ampules; one ampule of FSH contains 150 IU, whereas one ampule of HMG contains 75 IU each of LH and FSH.
The Day 3 and Day 5 variables are measured as described in Sec. 2.

3.1.1 Structural models for Ovarian Stimulation, Main Text Fig. 1

AMH =N (u, 0?), with
1 =3.100 (6)
o =3.706

Eggs =N (u,0?), with

1 =6.078+ @
3.938 x AMH — 0.325 x AMH? + 0.012 x AMH? — 1.38 x 10~* x AMH*
o =7.359

E2 =N(u,0?), with

1 =9.76 x 10>+ @)
96.252 x Eggs — 0.957 x Eggs®
o =8.89 x 102

MII =N (p1, 0?), with

pw=0.133+
0.695 x Eggs+ (9)
2.66 x 1074 x E2

o =2.929

3.1.2 Structural models for Ovarian Stimulation, Main Text Fig. 3
Age =N (p, 0%), with

1 =36.563 (10)
o =4.357

10



BMI =N (i, 0?), with
1 =22.087+
0.110 x Age
o =6.570

AMH =N (u, 0?), with
© =12.066+
—0.245 x Age
o =3.543

FSH =N (u, 0?), with
pw=11.669+
0.653 x Age+
0.172 x BMI+
—7.928 x AMH + 0.780 x AMH? — 0.029 x AMH? +3.49 x 10~% x AMH*
o =15.516

HMG =N (p, 0?), with
1 =56.312+
— 2.893 x Age + 0.054 x Age’+
—20.019 x AMH + 4.181 x AMH? — 0.389 x AMH? + 0.018 x AMH*+
—3.73 x 107% x AMH® +2.99 x 1075 x AMH®+
0.627 x FSH — 5.73 x 1072 x FSH?
o =14.878

Eggs =N (u,0?), with
p=8.039+
2.451 x AMH — 0.114 x AMH? + 1.59 x 1073 x AMH?+
—0.066 x HMG
o =7.308

E2 =N (u, %), with
=114 x 103+
26.308 x Age+
—14.213 x BMI+
— 4.655 x FSH+
13.637 x HMG — 0.169 x HMG?+
1.04 x 102 x Eggs — 1.042 x Eggs?
o =8.65 x 102

MII =N (u, 0?), with
pw=0.132+
0.695 x Eggs+
2.64 x 107* x E2
o =2.932

11

(11)

(15)



3.1.3 Structural models for Pre-Implantation Development, Main Tex Fig. 5

BMI =N (i, 0?), with
p=21.557+
0.123 x Age
o =6.428

(18)

MII =N (i, 0?), with
p =42.519+
—1.494 x Age 4 0.016 x Age?
o =6.571

(19)

Day 3 Cells =N (u, 0?), with
p =8.783+
—0.038 x Age
o =2.429

Day 5 Stage =N (u, 0?), with
p=3.642+
0.063 x Age — 1.58 x 1073 x Age®+ (21)
0.847 x Day 3 Cells — 0.031 x Day 3 Cells®
o =1.828

P(Fetal Heartbeat) =(1 + e~ *)~!, with
z=—8.704+
0.543 x Age — 9.18 x 1072 x Age*+
0.292 x Day 5 Stage

(22)

We present the missingness structural equations here for completeness. Empirically, the distribution of whether
an embryo is transferred (i.e. missingness for fetal heartbeat) differs for embryos transferred on day 3 versus those
on day 5; we present both here as separate equations.

P(D5 Rec.) =(1 + e *)~!, with
z

= — 3.588+
0.923 x MII — 0.054 x MII% + 1.35 x 1073 x MII® — 1.12 x 1075 x MIT*+
—2.587 x Age + 0.089 x Age? —9.95 x 10™% x Age’+ (23)

4.369 x Day 3 Cells — 1.222 x Day 3 Cells? + 0.147 x Day 3 Cells®—
7.91 x 1072 x Day 3 Cells® 4+ 1.57 x 10™* x Day 3 Cells’+
—0.129 x BMI + 1.99 x 10™3 x BMI?

P(Trans.|D5 Rec.) =(1 4+ e~ %)~ !, with
z = —3.776+
0.129 x MII — 9.82 x 1073 x MII? + 1.23 x 10~* x MII*+
1.604 x Age — 0.056 x Age® +6.42 x 107% x Age’+
2.300 x Day 3 Cells — 0.223 x Day 3 Cells® + 6.60 x 10™% x Day 3 Cells®+
1.090 x Day 5 Stage — 0.029 x Day 5 Stage®
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P(Trans.|D5 Miss.) =(1 + e *)~!, with
z =6.151+
—0.760 x MII + 0.028 x MII? — 2.92 x 10™* x MII*+
1.977 x Age — 0.076 x Age? +9.52 x 107* x Age®+
1.568 x Day 3 Cells — 0.082 x Day 3 Cells®

13

(25)



4 Supporting Data & Graphs for claims in the main text
4.1 Cross-Validation Results

The rank plot in Figure 3b in the main text shows the measured P-values for 99 conditional correlations among the
8 variables corresponding to the 99 conditional independencies predicted by the model in Figure 3a in the main text.
To create this plot, we measure the conditional correlation and associated P-value for each conditional correlation.
We then sort and plot the P-values. We do this process separately for the train (green) and test (red) data. The table
at the end of this section lists all measured P-values on the test and train sets; note that the conditional correlations
with suspiciously low P-values on the test set typically do not have low P-values on the train set, and vice versa.

Next, we check if the 99 P-values measured from the data are consistent with what one would expect if the model
is true. If the model is correct, then all of these conditional correlations should be consistent with zero, and none of
the measured P-values should be statistically significant. There are two complications here. First, since there are 99
separate tests, we must correct for multiple hypothesis testing. Second, since these 99 conditional correlations are
measured from the same 8 variables, these 99 tests are not independent — for example, Corr(MII, Age | E2, Eggs)
and Corr(MII, Age | E2, Eggs, AMH) test different independencies but involve the same variables MIT and Age. We
account for these complications by comparing the P-values from the measured conditional correlations in the data
with those from a distribution of 3000 datasets simulated according to the proposed model. If the proposed model
is correct, then the 99 conditional correlations and P-values measured from the dataset should be consistent with
being drawn from the distribution of simulated P-values.

We simulate 3000 datasets with the following procedure. First, we randomly sample Age with replacement. We
then generate the BMI by combining the structural equations from Main Text Figure 3a and SI Section 3 with the
randomly-sampled (with replacement) residuals from the fit of BMI to the train data. We then continue this process
by proceeding down the graph in Main Text Figure 3a to calculate AMH, then FSH, HMG, etc.. We then repeat
this process for a total 3000 times, to produce 3000 simulated datasets.

For each simulated dataset, we then calculate the 99 conditional correlations by performing the necessary regres-
sions with the same polynomial degree used for the real data and calculating the correlation between the residuals.
These simulated P-value rank plots give an estimate of what would be expected if the model proposed in the main
text is true. In principle, the distribution of P-value ranks for those generated according to the train data procedure,
where each dataset containg 3,413 cycles and the conditional correlations are evaluated by regressing on that dataset,
differs from the rank distribution generated according to the test data procedure, where each dataset contains 1,497
cycles and the conditional correlations are evaulated using regressions on the train data. In practice, the differences
between these distributions are not visible; as such, Main Text Figure 3 just shows the distribution for the simulated
train data. For comparison, we also generate rank plots according to linear Gaussian fully-connected models (Main
Text Figure 3c). For this, we first generate 3,000 datasets according to a random Gaussian models, each with a
randomly-drawn covariance matrix C = UUT, where Ui; is a Gaussian random variable with mean 0 and variance 1.
We then calculate the 99 conditional correlations for each of those 3,000 datasets, performing the regressions with
the same polynomial degree used for the real data and the previously simulated data.

We quantify the similarity between the expected and measured rank plots in Main Text Figure 3b with two
statistics. First, we examine the maximum distance between the measured P-value ranks and the median expected
from the simulation (i.e. the maximum vertical separation between the black line and the red or green lines in
the figure), similar to a Kolmogorov-Smirnov test. The maximum distance for the P-values measured on the train
set is 0.33; 0.09 of the simulated rank curves have this maximum distance or greater. The maximum distance for
the P-values measured on the test set is 0.24; 0.31 of the simulated rank curves have this maximum distance or
greater. This first statistic suggests that the proposed model broadly agrees with the data. Second, we examine
the minimum P-value for the 99 conditional independencies. The minimum P-value measured on the training set
is 2 x 10~* (corresponding to Corr(AMH, E2 | Age, BMI, FSH, HMG, Eggs, MII)); only 0.004 of the simulated rank
curves have a P-value this low. The minimum P-value measured on the test set is 7 x 10~° (corresponding to
Corr(Age, Eggs | AMH, FSH, HMG)); only 0.001 of the simulated rank curves have a P-value this low. Thus, this
second statistic weakly suggests that some features are missing from the model. Combined, this analysis shows that
the model in Main Text Fig. 3 is broadly consistent with the data, although with some evidence for additional, small
physiological effects missing from the model.

We also meaure how much the variance of the residuals changes when including all possible parameters, for both
the ovarian stimulation graph and the development graph. To do this, we fit the train data assuming a completely
connected graph. We nonlinearly regress each variable on all the upstream variables, following the procedure outlined
in Sec. 1.1 but forcing each term to enter in at least linearly. We then measure the variance of the residuals on the
test set, and compare the variance to the residuals on the test set using the model proposed in the main text. Of the
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8 ovarian stimulation variables shown in Fig. 3 in the main text, 3 remain unchanged on changing to a fully connected
model: Age is the first variable in both graphs and has no edges pointing into it, BMI is the second variable in both
graphs and therefore only has Age pointing into it, and FSH has all upstream variables pointing into it in the fully
connected model. The variance change for the remaining 5 variables is shown in the table below. Using a complete
model worsens the fits for all but Eggs. This worsening is presumably due to the increased variance in the regression
estimate when including additional variables. For pre-implantation development, the variance of the Day 3 Cells
residuals decreases when including MII and BMI, whereas the variance of the Day 5 Stage residuals increases.

Test Set Var., Test Set Var., Percent

Name proposed model | complete model change
AMH 15.18 15.20 +0.153%
HMG 251.27 251.45 +0.071%
Eggs 51.68 51.37 -0.600%
E2 883,606 888,766 +0.584%
MII 8.98 8.99 +0.182%
Day 3 Cells 5.78 5.77 -0.184%
Day 5 Stage 3.40 3.40 +0.034%

To check the results for fetal heartbeat, we use a likelihood test. We fit two models on the train set, the model
proposed in Main Text Fig. 5 and a complete model that includes additional parameters as described above. We then
fix the model parameters to their maximum a posteriori values and calculate the likelihood of the models on the test
set. Since the models are fit on the train set and evaluated on the test set, the ratio of the likelihood corresponds to
a Bayesian odds ratio of the two models; the table below reports this as a probability of the model in the text being
correct. The first row compares the model Age, Day 5 Stage — FH against the model Age, BMI, MII, Day 3 Cells,
Day 5 Stage — FH; the second row compares the model Age, Day 5 Troph, Day 5 Stage — FH against Age, Day 3
Cells, Day 3 Frag, Day 3 Granularity, Day 3 Multinucleation, Day 3 Symmetry, Day 3 Vacuoles, Day 5 Stage, Day 5
ICM, Day 5 Trophectoderm — FH. The two sets of likelihood are not directly comparable, as not all Day 5 transfers
have the trophectoderm and ICM grade recorded (these are only recorded for developed blastocysts of stage 5 or
higher).

Name \ Log Likelihood, proposed \ Log Likelihood, complete \ P
Including BMI, MII, and Day 3 Cells -479.96 -478.14 0.14
Including all Day 3, Day 5 grades -415.51 -415.61 0.53
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Name ‘ Corr., Train | P, Train ‘ Corr., Test | P, Test
Corr(Age, Eggs | AMH, FSH, HMG) -0.040 0.020 -0.102 7x107°
Corr(Age, Eggs | AMH, BMI, FSH, HMG) -0.040 0.020 -0.102 7x 1075
Corr(Age, Eggs | AMH, BMI, HMG) 20.045 0.009 0.090 | 5x10°7
Corr(Age, Eggs | AMH, HMG) -0.045 0.009 -0.090 5x 1074
Corr(Age, MII | AMH, E2, Eggs) 0.012 0.467 20.055 0.034
Corr(Age, MII | AMH, BMI, E2, Eggs) 0.013 0.453 -0.054 0.038
Corr(Age, MII | AMH, E2, FSH, Eggs) 0.009 0.615 -0.053 0.041
Corr(Age, MII | AMH, BMI, E2, FSH, Eggs) 0.009 0.615 -0.053 0.041
Corr(Age, MII | E2, Eggs) 0.016 0.351 -0.053 0.042
Corr(Age, MII | BMI, E2, Eggs) 0.016 0.338 -0.051 0.047
Corr(Age, MII | BMI, E2, FSH, Eggs) 0.010 0.544 70.051 0.049
Corr(Age, MII | E2, FSH, Eggs) 0.010 0.544 -0.051 0.049
Corr(AMH, MII | Age, BMI, FSH, HMG, Eggs) -0.030 0.083 -0.049 0.057
Corr(AMH, MII | Age, E2, FSH, HMG, Eggs) -0.033 0.054 -0.047 0.066
Corr(AMH, MII | Age, BMI, E2, FSH, HMG, Eggs) -0.033 0.054 -0.047 0.066
Corr(AMH, MII | BMI, E2, FSH, HMG, Eggs) -0.035 0.043 -0.047 0.071
Corr(AMH, MII | E2, FSH, HMG, Eggs) -0.035 0.043 -0.047 0.071
Corr(FSH, MII | E2, HMG, Eggs) 0.012 0.498 -0.040 0.126
Corr(FSH, MII | BMI, E2, HMG, Eggs) 0.012 0.483 -0.039 0.130
Corr(Age, MII | AMH, E2, FSH, HMG, Eggs) 0.029 0.093 -0.039 0.131
Corr(Age, MII | BMI, E2, FSH, HMG, Eggs) 0.029 0.093 -0.039 0.131
Corr(Age, MII | E2, FSH, HMG, Eggs) 0.029 0.093 -0.039 0.131
Corr(Age, MII | AMH, BMI, E2, FSH, HMG, Eggs) 0.029 0.093 -0.039 0.131
Corr(HMG, MII | E2, Eggb) -0.039 0.022 -0.037 0.155
Corr(Age, MII | AMH, E2, HMG, Eggs) 0.029 0.086 -0.036 0.164
Corr(Age, MII | AMH, BMI, E2, HMG, Eggs) 0.029 0.085 -0.036 0.169
Corr(HMG, MII | BMI, E2, Eggs) -0.039 0.022 -0.035 0.175
Corr(FSH, MII | Age, E2, HMG, Eggs) 0.003 0.874 -0.034 0.183
Corr(FSH, MII | Age, BMI, E2, HMG, Eggs) 0.003 0.854 -0.034 0.188
Corr(AMH, MII | Age, BMI, E2, HMG, Eggs) -0.034 0.047 -0.034 0.191
Corr(AMH, MII | Age, E2, HMG, Eggs) -0.034 0.047 -0.034 0.191
Corr(Age, MII | E2, HMG, Eggs) 0.033 0.055 -0.033 0.206
Corr(Age, MII | BMI, E2, HMG, Eggs) 0.033 0.054 -0.032 0.212
Corr(HMG, MII | AMH, E2, Eggs) 70.037 0.031 70.031 0.234
Corr(HIMG, MII | AMI, BMI, E2, Eggs) 20.037 0.031 20.029 0.257
Corr(HMG, MII | E2, FSH, Eggs) -0.047 0.006 -0.029 0.260
Corr(HIMG, MII | BMI, E2, FSH, Eggs) 20.047 0.006 -0.028 0.272
Corr(FSH, MII | E2, Eggs) 0.009 0.615 -0.027 0.290
Corr(AMI, MII | Age, BMI, E2, FSH, Eggs) 20.017 0.328 20.027 0.296
Corr(AMH, MII | Age, E2, FSH, Eggs) -0.017 0.328 -0.027 0.296
Corr(BMI, Eggs | AMH, HMG) -0.012 0.466 -0.027 0.296
Corr(AMH, MII | Age, BMI, E2, Eggs) -0.021 0.225 -0.026 0.306
Corr(AMH, MII | Age, E2, Eggb) -0.021 0.225 -0.026 0.306
Corr(HMG, MII | AMH, E2, FSH, Eggs) -0.042 0.013 -0.026 0.306
Corr(HMG, MIT | AMH, BMI, E2, FSH, Eggs) -0.042 0.013 -0.026 0.322
Corr(FSH, MII | BMI, E2, Eggs) 0.009 0.586 -0.025 0.325
Corr(AMI, E2 | Age, BMI, FSH, HIMG, Eggs) 0.061 3x10 1| -0.024 0.355
Corr(BMI, Eggs | Age, AMH, HMG) -0.011 0.508 -0.024 0.355
Corr(AMI, MII | BMI, E2, HMG, Eggs) 70.032 0.066 70.023 0.364
Corr(AMI, MII | E2, HMG, Eggs) 70.032 0.066 20.023 0.364
Corr(BMI, Eggs | AMH, FSH, HMG) -0.011 0.540 -0.023 0.368
Corr(BMI, Eggs | Age, AMH, FSH) -0.011 0.530 -0.023 0.370
Corr(BMI, Eggs | Age, AMH, FSH, HMG) 70,011 0.539 70.022 0.389
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Name ‘ Corr., Train | P, Train ‘ Corr., Test | P, Test

Corr(AMH, MII | BML E2, FSH, Eggs) 20.018 0.292 20.022 0.397
Corr(AMH, MII | E2, FSH, Eggs) 0.018 0.202 20.022 0.397
Corr(FSH, MII | AMH, E2, Eggs) 0.021 0.226 -0.022 0.403
Corr(HMG, MII | Age, BMI, E2, Eggs) -0.044 0.009 -0.021 0.424
Corr(HMG, MII | Age, BMI, E2, FSH, Eggs) 20.049 0.004 20.021 0.425
Corr(HMG, MII | Age, E2, FSH, Eggs) -0.049 0.004 -0.021 0.425
Corr(AMI, E2 | Age, BMI, FSH, HIMG, Eggs, M) 0.064 %10 T | -0.020 0.429
Corr(FSH, MII | AMH, BMI, E2, Eggs) 0.021 0.220 20.020 0.431
Corr(HIMG, MII | Age, E2, Eggs) 0.042 0.014 20.018 0475
Corr(BMI, MII | AMH, E2, Eggs) -0.005 0.785 20.018 0.487
Corr(BMI, MII | E2, Eggs) 20.005 0.785 20.018 0.487
Corr(HMG, MII | Age, AMH, E2, Eggs) -0.042 0.015 -0.018 0.494
Corr(HIMG, MIT | Age, AMI, BMI, E2, FSH, Eggs) 20.045 0.008 0.017 0.502
Corr(HMG, MII | Age, AMH, E2, FSH, Eggs) -0.045 0.008 -0.017 0.502
Corr(HIMG, MII | Age, AMI, BMI, E2, Eggs) 20.042 0.015 0.017 0.515
Corr(BMI, MIT | AMH, E2, FSH, Eggs) -0.006 0.737 -0.017 0.516
Corr(BMI, MIT | E2, FSH, Eggs) 20.006 0.737 20.017 0.516
Corr(BMI, MII | AMH, E2, HMG, Eggs) 6x10 % | 0971 20.016 0.535
Corr(BMI, MIT | E2, HMG, Eggs) 6x10 % | 0971 20.016 0.535
Corr(BMI, MII | E2, FSH, HMG, Eggs) -0.003 0.846 -0.015 0.554
Corr(BMI, MII | Age, E2, FSH, HMG, Eggs) 20.003 0.846 20.015 0.554
Corr(BMI, MIT | AMH, E2, FSH, HMG, Eggs) -0.003 0.846 -0.015 0.554
Corr(FSH, Eggs | AMH, HMG) 20.040 0.019 20.015 0.571
Corr(BMI, MII | Age, AMH, E2, Eggs) 20.005 0.751 20.014 0.577
Corr(BMI, MII | Age, E2, Eggs) 20.005 0.751 20.014 0.577
Corr(BMI, MII | Age, AMH, E2, FSH, HIMG, Eggs) 20.006 0.709 20.014 0.584
Corr(BMI, MII | Age, AMH, E2, FSH, Eggs) 20.006 0.709 20.014 0.584
Corr(BMI, MIT | Age, E2, FSH, Eggs) 20.006 0.709 20.014 0.584
Corr(AMI, MII | BMIL, E2, Eggs) 20.022 0.197 0.013 0.604
Corr(AMI, MII | E2, Eggs) 0.022 0.107 20.013 0.604
Corr(BMI, MIT | Age, AMH, E2, HMG, Eggs) -0.002 0.894 -0.013 0.608
Corr(BMI, MII | Age, E2, MG, Eggs) 20.002 0.894 20.013 0.608
Corr(FSH, MII | AMH, E2, HMG, Eggs) 0.008 0.655 20.013 0.619
Corr(FSH, Eggs | AMH, BMI, HMG) 20.045 0.009 20.013 0.622
Corr(FSH, MII | Age, AMIH, E2, Eggs) 0.018 0.296 20.013 0.625
Corr(FSH, MII | Age, AMH, BMI, E2, Eggs) 0.018 0.288 20.012 0.650
Corr(FSH, Eggs | Age, AMH, BMI, HMG) -0.026 0.126 0.012 0.651
Corr(FSH, Eggs | Age, AMH, HMG) -0.027 0.119 0.012 0.654
Corr(FSH, MII | Age, AMH, E2, HMG, Eggs) 0.001 0.949 20.010 0.696
Corr(FSH, MII | AMH, BMI, E2, HMG, Eggs) 0.004 0.821 20.010 0.698
Corr(FSH, MII | Age, AMI, BMI, E2, HMG, Eggs) 0.001 0.931 20.010 0.700
Corr(FSH, MII | Age, E2, Eggs) 0.009 0.587 20.008 0.770
Corr(FSH, MII | Age, BMI, E2, Eggs) 0.010 0.571 20.007 0.799
Corr(BMI, HMG | Age, AMH, FSH) 0.024 0.161 -0.005 0.846
Corr(BMI, HMG | Age, AMH, FSH, Eggs) 0.025 0.137 20.003 0.913
Corr(AMIH, BMI | Age) 20.044 0.011 0.002 0.051
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4.2 QOocyte Maturation

The following pages contain supporting plots for Section IT A — C in the main text.
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Figure 2: Additional conditional correlations corresponding to Fig. 1 in the main text. The only two conditional

independencies apparent in the data are the two shown in Fig. 1 in the main text.

(a) The residuals of the Eggs

plotted versus the residuals of the patient AMH, after regressing both against MII, which we denote as Eggs vs Age
| MIL. (b) MII vs Eggs | AMH. (c) Eggs vs AMH | E2. (d) E2 vs Eggs | AMH. (e) E2 vs Eggs | MIL. (e) MII vs Eggs
| E2.
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Figure 3: Conditional independencies for the graphical model shown in Fig. 3 in the main text. (a) BMI vs AMH |
Age. (b) E2 vs AMH | Eggs, FSH, HMG. (c) Eggs vs AMH | AMH, HMG. (d) Eggs vs BMI | AMH, HMG. (e) Eggs
vs FSH | AMH, HMG. (e) HMG vs BMI | Age, AMH, FSH.
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Figure 4: Eggs vs AMH. Green lines: nonlinear fit to the data; red dots: data and standard error after grouping into
20 bins; gray dots: raw data. Note that, while AMH is linear in Eggs (Fig. 3 of main text), AMH is visibly nonlinear

in Eggs.
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Figure 5: (a) Day 3 Cells vs Age. Green lines: linear fit to the data; red dots: data and standard error after grouping
into 20 bins; gray dots: raw data. (b) Day 5 Stage vs Age, after regressing against Day 3 Cells. (c) Day 3 Cells
vs BMI, after regressing against Age. The slope of the line is consistent with zero. (d) Day 5 Stage vs BMI, after
regressing against Age and Day 3 Cells. The slope of the line is consistent with zero. (e) Day 3 Cells vs MII, after
regressing against Age. The slope of the line is small but constrained away from zero. (f) Day 5 Stage vs MII, after
regressing against Age and Day 3 Cells. The slope of the line is consistent with zero.

4.3 Embryonic Development

The data is consistent with neither BMI nor MII having any effect on the Day 5 stage of the embryo, after conditioning
on Age and Day 3 Cells:

Corr(BMI, Day 5 Stage | Age, Day 3 Cells) = 0.007 (P = 0.51)
Corr(MII, Day 5 Stage | Age, Day 3 Cells) = —0.011 (P = 0.12)

However, the data paints a slightly more complex picture for the effect of BMI and MII on Day 3 Cells. The data is
consistent with no correlation between BMI and Day 3 Cells, after conditioning on Age, but suggests a very weak
but nonzero correlation between Day 3 Cells and MII.

Corr(BMI, Day 3 Cells | Age, Day 3 Cells) = —0.001 (P =0.94)
Corr(MIIL, Day 3 Cells | Age, Day 3 Cells) = 0.042 (P =1 x 1079)

While the measured correlation coefficient is nonzero between MII and Day 3 Cells (given Age), it is a tiny effect, as
shown in SI Fig. 5e and as shown in Sec. 4.1, accounting for less than 0.2% of the variance in Day 3 Cells.
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Figure 6: (a) Estimated probability of an embryo resulting in a fetal heartbeat (FH) as a function of Age alone. The
red circles and errors show the probability estimated by a model that fits an independent probability of implantation
for each number of cells; the green line and shaded region shows the nonlinear model with the highest model evidence
and its error. (b) The logit of the estimated probability of FH as a function of Age, after regressing against Day 5
Stage. Red circles and error bars show the additional log probability estimated from a model that fits an independent
logit for each value of Day 3 Cells; green line shows the best linear model for the logit and its uncertainty. Age is
predictive of FH even after regressing on Day 5 Stage. (c) The logit of P(FH) vs Day 5 Stage, after regressing on
Age. Day 5 Stage is predictive of FH even after regressing on Age. (d) The logit of P(FH) vs Day 5 Stage, after
regressing on Day 3 Cells. Day 5 Stage is predictive of FH even after regressing on Day 3 Cells. (e) The logit of
P(FH) vs BMI, after regressing on Age and Day 5 Stage. The data is consistent with BMI conferring no additional
predictive on FH once Age and Day 5 Stage are known. (f) The logit of P(FH) vs MII, after regressing on Age and
Day 5 Stage. The data is consistent with BMI conferring no additional predictive on FH once Age and Day 5 Stage
are known. (g) Estimated probability of an embryo resulting in a fetal heartbeat as a function of the number of
embryos transferred alone, and (h) the logit of P(FH) vs the number transferred, after regressing on Age and Day 5
Stage.
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