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Summary

Background: Cellular structures such as the nucleus, Golgi,
centrioles, and spindle show remarkable diversity between
species, but the mechanisms that produce these variations
in cell biology are not known.
Results: Here we investigate the mechanisms that contribute
to variations in morphology and dynamics of the mitotic spin-
dle, which orchestrates chromosome segregation in all Eu-
karyotes and positions the division plane in many organisms.
We use high-throughput imaging of the first division in nema-
todes to demonstrate that the measured effects of sponta-
neous mutations, combined with stabilizing selection on cell
size, are sufficient to quantitatively explain both the levels of
within-species variation in the spindle and its diversity over
w100 million years of evolution. Furthermore, our finding of
extensive within-species variation for the spindle demon-
strates that there is not just one ‘‘wild-type’’ form, rather that
cellular structures can exhibit a surprisingly broad diversity
of naturally occurring behaviors.
Conclusions:Our results argue that natural selection acts pre-
dominantly on cell size and indirectly influences the spindle
through the scaling of the spindle with cell size. Previous
studies have shown that the spindle also scales with cell size
during early development. Thus, the scaling of the spindle
with cell size controls its variation over both ontogeny and
phylogeny.

Introduction

Cellular structures such as the nucleus [1], Golgi [2], centrioles
[3], and spindle [4–6] show remarkable diversity between spe-
cies. The mechanisms that produce these variations in cell
biology are not known, and a wide variety of possibilities
have been proposed. Some have hypothesized that nearly all
subcellular processes have been molded by natural selection
to perform optimally in their native cellular and environmental
context [7]. Others have suggested that natural selection has

only had a limited role in shaping subcellular organization,
with variation arising either froman accumulation of non-adap-
tive changes [8, 9] or due to the intrinsic tendency of self-orga-
nizing, living matter [10]. Different processes could dominate
in different systems and on different evolutionary timescales
[11]. Each of these, and other possibilities, makes distinct as-
sertions of how spontaneous mutations modify cell biological
processes, of the fitness effects of these changes, and of the
trends in these changes over the course of evolution. For
example, neutral traits are broadly distributed in populations
with a mean value that diverges as the square root of the num-
ber of generations to their last common ancestor, whereas
optimized traits change over evolution due to changes in the
optimum (not due to phylogenetic distances per se) and are
degraded by spontaneous mutations [12]. The spindle, which
segregates chromosomes during cell division in all Eukary-
otes, is one of the most extensively studied subcellular struc-
tures, but even in this case the validity of different evolutionary
scenarios cannot currently be tested because there are insuf-
ficient data on the influence of spontaneous mutations on
spindles, the relationship between spindles and fitness, and
evolutionary trends in spindles.
Evolutionary trends can be studied in extant organisms by

either investigating changes across species of known phylog-
eny [13] or by dissecting the nature and extent of within-species
variations [14]. There is extensive information in different
species on the morphology and dynamics of the spindle [4, 5,
15, 16]. This work has revealed large variations in all attributes
of the spindle, with the length of the spindle ranging from
w0.5 mm inOstreococcus tauri [17] to over 50 mm in early devel-
opment in Xenopus laevis [18], but most of the data are from
distantly related organisms of unknown phylogenetic relation-
ship, making it difficult to determine evolutionary trends. The
most detailed comparison between spindles in more closely
related species has been between X. laevis and X. tropicalis
[19–21],whichare still quite distant, havingdivergedw40million
years ago; they have undergone extensive genetic changes
including a whole-genome duplication [22, 23]. We are unaware
of any study of the extent of within-species variations in spindle
morphology or dynamics. Thus, the evolutionary trends in
changes in the spindle remain unknown.
The ultimate source of biological diversity is mutations,

which are subjected to selection, drift, and recombination, to
produce variation within species and, over longer timescales,
differences between species. The manner in which genetic
changes caused by spontaneous mutations alter the spindle
is thus critical for determining its evolution. Studies in different
model organisms have identified hundreds of proteins that
contribute to the spindle [15, 16], but this information cannot
easily be used to infer the effects of spontaneous mutations
on the spindle, which depends on the detailed spectrum of
rates and location of mutation in the genome that occur in
both protein coding and regulator regions. Analysis of DNA se-
quences provides insight into the conservation and variations
in proteins known to contribute to the spindle in model organ-
isms, for example revealing that no mitotic molecular motor is
universally conserved [24, 25], but it is unclear how to relate
these data to changes in spindle morphology and dynamics.
Thus, the manner in which spontaneous mutations cause*Correspondence: rfarhadifar@cgr.harvard.edu
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changes in the spindle remains unknown and, similarly, it is
also unknown how changes in spindle morphology and dy-
namics might influence fitness.

Herewepresent asystematic studyof theevolutionof thefirst
mitotic spindle in nematodes.We developed a high-throughput
imaging platform capable of quantitatively measuring spindle
morphology and dynamics: the initial length of the spindle, the
speed of anaphase, the final length of the spindle, the size of
centrosomes, and the position of the division plane. We used
this system to determine the extent of within-species variations
in spindles, howspindles changeover phylogeny, themanner in
which spontaneous mutations alter the spindle, and the rela-
tionshipbetween thespindleandfitness.We found that theevo-
lution of the aspects of the spindlewe studied can be explained
by the combination of the measured effects of spontaneous
mutations and stabilizing selection on cell size, quantitatively
accounting for both the levels of within-species variation in
the spindle and its diversity over w100 million years of evolu-
tion.Our results argue that natural selection acts predominantly
on cell size and only indirectly influences the spindle through
the scaling of the spindle with cell size. Furthermore, we have
discovered that there is extensive within-species genetic varia-
tion for spindle morphology and dynamics, whichmay have im-
plications for human disease and provides a novel route for
furthermechanistic studiesof thespindleandpossiblyother as-
pects of cell biology.

Results

Spindles Show Extensive Variation between

Caenorhabditis elegans Natural Isolates
We first sought to determine the level of within-species varia-
tion in spindles, which is currently unknown due to the lack of
high-throughput quantitative techniques capable of measuring
such diversity. We thus developed a high-throughput imaging
platform to study the first mitotic division in Caenorhabditis
elegans, consisting of 3D time-lapse differential interference
contrast microscopy of multiple embryos (Figure 1A) and

automated image analysis of the embryo and spindle (Fig-
ure 1B) (see the Experimental Procedures for details). This sys-
temenabled us to track thepole-to-pole distance of the spindle
over time (Figure 1C) and measure the initial length of the spin-
dle, the speed of spindle elongation, and the final length of the
spindle, as well as the size of the centrosomes, the position of
the division plane, and the length of the embryo.
We used this imaging platform to investigate the extent of

within-species variation of spindles by studying 97 C. elegans
natural isolates (20–40 embryos per isolate) collected from
around the world. We found that the differences in spindles
between isolates are greater than the differences between
embryos from the same isolate (Figures 2A–2C). We observed
extensive variation for all aspects of spindles (see Figure S1),
as illustrated in Figure 2D for centrosome size, which varies
nearly 2-fold across different C. elegans natural isolates. The
variations between embryos from the same isolate are caused
by non-genetic factors, as they are clones.We sought to quan-
tify the contribution of genetic factors to spindle variation,
because evolution is caused by changes in the genetic compo-
sition of populations. We used H2boot [26], a bootstrapping
program (see the Experimental Procedures for details), to
decompose the measured phenotypic variance for each trait
(Vp) into a genetic component (Vg), namely the variance due
to difference between isolates, and an environmental compo-
nent (Ve), namely the variance between embryos from the
same isolate. We found significant genetic variance (Vg) for all
traits we studied (Table S1). Thus, there is substantial standing
genetic variation for spindle diversity in C. elegans.
The traits we measured are not independent of each other;

for example, the final length of the spindle is greater in larger
embryos (Figure 2E). We used H2boot to determine the partial
correlation between pairs of traits, that is, the relation between
traits controlling for the influence of other traits. We found sig-
nificant partial correlations betweenmany traits (Figure 2F). All
traits have a significant partial correlation with embryo size
(Figure 2F): larger embryos tend to have larger centrosomes
and larger spindles, which elongate faster, and a resulting
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Figure 1. Tracking and Quantification of Spindle Traits in the First Mitotic Division of C. elegans

(A) Live-cell imaging of multiple embryos. The embryo in (B) is highlighted. The scale bar represents 10 mm.

(B) Automatic tracking of the cellular boundary (orange), centrosomes (blue), and spindle region (green). The division plane is marked in the last top panel.

The scale bar represents 10 mm.

(C) Quantification of cell-division traits. For each embryo, we measured the pole-to-pole distance of the spindle as a function of time, allowing us to extract

the initial and final lengths of the spindle and its rate of elongation. We also measured centrosome size, the length of the embryo, and the position of the

division plane. The scale bars represent 10 mm (first and third panels) and 2 mm (second panel).
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division plane farther from the posterior end of the embryo.
Because embryo size and cell size are the same for the first
mitotic division, this result indicates that all aspects of the
spindle we studied scale with cell size.

Spontaneous Mutation Significantly Changes Spindle

Morphology and Dynamics
We next studied the processes that give rise to the observed
genetic variation for spindles inC. elegans. Because all genetic
variation ultimately originates from spontaneous mutations,
we first investigated how spontaneous mutations influence
the spindle. The most direct method of studying the effects
of spontaneous mutations on any phenotypic trait is through
the use of mutation accumulation (MA) lines, which were
generated by propagating randomly chosen single progeny
for w250 generations (see Figure S2) [27]. This procedure

results in the MA lines having an effective population size of
one, allowing the accumulation of non-lethal and non-sterile
mutations during their production. The manner in which spon-
taneous mutations perturb the spindle can be determined by
measuring the divergence in spindles between the MA lines.
We imaged cell division in 94 MA lines (20–40 embryos per
line, generated from two different isolates, N2 and PB306).
All spindle traits significantly varied among the MA lines, and
the variance of these traits in the MA lines was greater than
the variance in the ancestral generation (as illustrated for the
elongation rate of the spindle in Figure 3A), indicating a signif-
icant effect of spontaneous mutations on spindles. Whereas
the variance of the traits across the MA lines was greater
than in the ancestral generation, the mean of the traits across
the MA lines did not significantly change (p < 0.05 by F test),
arguing that spontaneous mutations are as likely to produce
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Figure 2. Variation of Spindles across Different C. elegans Natural Isolates

(A) Left: representative images showing the position of the division plane in two natural isolates (JU363 and CX11271). Right: histograms of the division-

plane position for all embryos measured from these natural isolates. The scale bar represents 10 mm.

(B) Left: representative images showing the final spindle length for two natural isolates (CB4932 and JU1242). Right: histograms of the final spindle length for

all embryos measured from these natural isolates. The scale bar represents 10 mm.

(C) Left: representative images of centrosomes in two natural isolates (MY23 and JU398). Right: histograms of centrosome size for all embryos measured

from these two isolates are shown. The scale bar represents 2 mm.

(D) Ranked-order plot of centrosome size of the 97C. elegans natural isolates analyzed in this study. Centrosome size varies 2-fold across different isolates.

(E) Plotting final spindle length versus embryo size reveals a correlation between these two variables. Gray dots are values for individual embryos, and red

dots are average values for each natural isolate.

(F) Significant (p < 0.001) partial correlations between pairs of cell-division traits across C. elegans natural isolates: initial spindle length (IL), final spindle

length (FL), spindle elongation rate (ER), centrosome size (CS), division-plane position (DP), and embryo size (ES). All traits are correlated with embryo size.

See also Figure S1.
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increases as decreases in these traits (see Table S1). The var-
iations between embryos from the sameMA line are caused by
non-genetic factors, as they are clones, whereas differences
between different MA lines are due to genetic factors: random
mutations that accumulated during the generation of each line.
We used H2boot to extract the genetic component of the vari-
ance of the traits in the MA lines, that is, the variance that can
be attributed to the difference betweenMA lines.We then used
these results to determine the amount of genetic variance
generated by spontaneous mutations in a single generation
(Vm) for each trait (see Table S1).

Having quantified the effects of spontaneous mutations, we
could evaluate the validity of different scenarios for the evolu-
tion of the spindle in C. elegans. For a neutral trait with evolu-
tionary dynamics governed only by drift, the ratio of Vg,
measured across natural isolates, to the mutational variance
(Vm), measured in the MA lines, is four times the effective pop-
ulation size (Ne) [12], estimated to be w10,000 in C. elegans
from molecular approaches [28] (i.e., Vg/Vm = 4 Ne w40,000
for neutral drift). All the traits we studied show less genetic
variation than expected from neutral drift, with embryo size
showing the greatest deviation from neutral expectation (Vg/
Vm w250 for embryo size and Vg/Vm w370–1,400 for other
traits), allowing the neutral drift model to be strongly rejected
(p < 0.001 by bootstrapping). Thus, we conclude that varia-
tions in the aspects of the spindle we studied are not deter-
mined solely by neutral drift.

Stabilizing Selection on Embryo Size Quantitatively

Explains the within-Species Variations in Spindles
The observed deviations from neutral expectations might be
due to the influence of selection. Hypothetically, spindles
could be locally adapted to the natural environment of each
of the isolates, but the observation that the level of local ge-
netic diversity is similar to the extent of global variation [28]
and lack of population structure in C. elegans [28], and the
absence of correlation between spindle traits and the location

(see Figures S3A and S3B) or temperature (Figures S3C and
S3D) from where isolates were collected, argues against this
scenario. An alternative possibility is that there is a single
optimal behavior of the spindle in C. elegans, and that the di-
versity across the isolates is due to a balance between spon-
taneous mutations continually generating new variations and
stabilizing selection preferentially eliminating less fit individ-
uals with spindles that deviate from the optimum. Such a mu-
tation-stabilizing selection balance has long been considered
to be one of the primary processes that maintains standing ge-
netic variation for quantitative traits [29]. Indirect support for
this scenario comes from the observation that crossing two
of the natural isolates produces offspring with more extreme
(transgressive) values of the cell-division traits than the pa-
rental lines (data not shown), suggesting prevalent compensa-
tory substitutions.
We sought to further explore the validity of mutation-stabi-

lizing selection balance for the spindle by testing whether the
observed levels of standing genetic variation for spindle traits
can be explained by themeasured effects of spontaneousmu-
tations and the proposed role of stabilizing selection. Because
the measured spindle traits are correlated with each other and
with embryo size, it is possible that stabilizing selection might
directly act on only a subset of these traits and indirectly influ-
ence the other traits through their mutual correlations [30].
Because embryo size shows the greatest deviation from
neutral expectations (see above) and is correlated with all
spindle traits we measured (Figure 2F), we wondered whether
stabilizing selection acting solely on embryo size is sufficient
to account for the level of genetic variation of spindle traits in
C. elegans. For a set of traits subject to mutation-stabilizing
selection balance [31],

M=GWG; (Equation 1)

where M is a symmetric matrix with diagonal elements of ge-
netic mutational variances generated per generation (Vm for
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Figure 3. Stabilizing Selection on Embryo Size Quantitatively Predicts within-Species Variation of Spindle Traits

(A) Effect of spontaneous mutations on spindles. Deviation of spindle elongation rate from the average of the ancestral lines at generation zero (blue) and

after 250 generations of mutation accumulation (red). Error bars indicate the SE. Histograms of the deviations are shown in the right-hand panel. Solid lines

indicate Gaussian fits to these distributions.

(B) Stabilizing selection on embryo size quantitatively explains variation of cell-division traits. Each element of the matrixM, the variance/covariance matrix

of the effect of spontaneousmutations on spindle traits measured in theMA lines, is plotted against the corresponding element of the matrixGWG, whereG

is the variance/covariance matrix of traits measured acrossC. elegans natural isolates andW is thematrix of selection coefficients, which has only one non-

zero element related to the strength of stabilizing selection on embryo size. The points predominantly fall along the unitary line (black), indicating consis-

tency with the equation M = GWG (see text). Error bars indicate SEs measured by bootstrapping.

See also Figure S2.
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each trait) and off-diagonal elements of genetic mutational co-
variances between pairs of spindle traits (calculated by multi-
variate ANOVAs; see the Experimental Procedures for details
and Table S2, part B). The symmetric matrixG has diagonal el-
ements of genetic variances among the natural isolates (Vg for
each trait) and off-diagonal elements of the genetic covari-
ances between pairs of traits in the natural isolates (calculated
by multivariate ANOVAs; see the Experimental Procedures for
details and Table S2, part A). W is a matrix describing the
pattern and strength of stabilizing selection on the traits. We
postulated stabilizing selection solely on embryo size by
setting all elements of W to zero except for the one corre-
sponding to embryo size (wES = 0.007 mm22), and checked
the validity of Equation 1 by plotting the matrix elements
of M versus the matrix elements of GWG (Figure 3B). These
matrix elements lie along a straight line (Figure 3B), demon-
strating consistency with Equation 1 and showing that stabi-
lizing selection on embryo size, and the correlations of the
spindle with embryo size, is sufficient to account for the
within-species variations in C. elegans for all aspects of spin-
dles we studied.

To further test for the existence of stabilizing selection on
embryo size, we measured fecundity in the C. elegans natural
isolates (see the Experimental Procedures for details) and
found that, among all aspects of cell division we studied, the
strongest association was with embryo size: embryo size is
quadratically correlatedwith fecundity (p < 0.003; seeFigure 4),
with an optimal embryo size of 51 6 1 mm (mean 6 SD) and
a deviation of 1 mm leading to a reduction in fecundity of
w2%. This strength of stabilizing selection inferred from the
quadratic regression on fecundity is similar in magnitude to
that estimated by comparing the levels of mutational and
standing genetic (co)variances through the use of Equation
1. The agreement between these two different measurements
further supports the existence of stabilizing selection on em-
bryo size. Thus, there is strong evidence for stabilizing se-
lection on embryo size in C. elegans, and the combination of
this stabilizing selection with the measured effects of sponta-
neous mutations and the correlation of spindle traits with em-
bryo size are sufficient to quantitatively explain the extent of
within-species variation of spindles in C. elegans.

Stabilizing Selection on Embryo Size Quantitatively
Explains the between-Species Variations in Spindles

The C. elegans population has experienced recent chromo-
some-scale selective sweeps leading to reduced genetic

diversity and extensive linkage disequilibrium [28]. Because
these processes could also affect standing genetic variation
for spindles, we investigated the extent of spindle variation
in other species with different population dynamics. We ima-
ged 19 natural isolates of C. briggsae, 16 natural isolates of
C. brenneri, and 13 natural isolates of C. remanei, and found
that the within-species genetic variances of cell-division traits
(Figure 5A), and the pattern of correlations between them (Fig-
ure 5B), in the other species are very similar to those in
C. elegans. This argues that the level of genetic variance for
spindle traits and embryo size is not caused by the specific
sweeps that occurred in C. elegans, or the particular pattern
of linkage disequilibrium, which is expected to be different in
these species with different mating types (androdiecious for
C. elegans and C. briggsae, gonochoristic for C. brenneri
and C. remanei), and is consistent with our inference of stabi-
lizing selection.
We next studied cell division in 37 additional species of nem-

atodes, thought to span w120 million years of evolution [32].
These species display a range of embryo sizes and spindle
behaviors (Figure 5C). Because the extent and pattern of
within-species variations in spindles can be explained by the
combination of stabilizing selection on embryo size and the
correlation of spindle traits with embryo size, we wondered
whether the samemechanism could also account for the diver-
sity of spindles across different species of nematodes that
we studied. We first considered the dynamics of evolutionary
changes of embryo size and found that the divergence of em-
bryo size with phylogenetic distance cannot be explained by
neutral drift or stabilizing selection with a single optimum but
is consistent with each species having its own optimal size
(see the Experimental Procedures and Figure S4).
We next investigated whether differences in optimal em-

bryo size could account for the diversity of spindle traits in
these different species. Quantitative genetic theory predicts
that if natural selection acts on one trait (i.e., embryo size) it
will drive changes in correlated traits (i.e., final spindle length,
centrosome size, and the spindle traits we studied), with a
response in the correlated trait proportional to the genetic
covariance between the traits [12]. Therefore, for species
with similar genetic variances and covariances between traits
(as is the case for the nematodes studied here; Figures 5A and
5B), the change in the mean of the correlated traits across
species is predicted to be linearly proportional to the change
in the mean of the selected trait (i.e., embryo size), with a
regression coefficient equal to the ratio of genetic covariance
of the selected and correlated traits divided by the genetic
variance of the selected trait (see [33] and the Experimental
Procedures for details). Thus, to test the validity of an evolu-
tionary scenario in which embryo size is subject to stabilizing
selection with an optimal embryo size that varies between
species and differences in spindle traits are caused by their
correlated response to selection on embryo size, we mea-
sured the regression between embryo size and spindle traits
across species and compared these results with predic-
tions from quantitative genetic theory based on the patterns
of within-species variation in spindle traits measured in
C. elegans. The predictions of this model, which has no free
parameters, show quantitative agreement for all aspects of
spindles we studied (Figure 5D). Therefore, stabilizing selec-
tion on embryo size, indirectly influencing the spindle through
its correlation with embryo size, is sufficient to quantitatively
explain the differences in spindles between species of
nematodes.
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Figure 4. Fecundity Is Quadratically Correlated with Embryo Size

Fecundity (see the Experimental Procedures for details) as a function of em-

bryo size in the natural isolates. Gray dots are values for individual isolates

(mean 6 SE). The red line shows a quadratic fit to the data (see the Exper-

imental Procedures for details). See also Figure S3.
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Discussion

Taken together, our results show that the effects of sponta-
neous mutations on cell division in a single generation, com-
bined with stabilizing selection on embryo size, are sufficient
to quantitatively explain the levels of variation in the spindle
within species and over w100 million years of evolution. Our
data argue that selection acts predominantly on cell/embryo
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Figure 5. Stabilizing Selection on Embryo Size

Quantitatively Predicts between-Species Varia-

tion of Spindle Traits

(A and B) Variances of the measured traits,

normalized by the species mean (A), and cor-

relation coefficients between the traits (B) in

C. remanei, C. briggsae, and C. brenneri plotted

against the variances or covariances of the corre-

sponding traits in C. elegans (6SE). The vari-

ances and covariances predominantly fall along

the unitary line (black), indicating that the pattern

of within-species variation for these traits in the

three other nematode species is similar to that

in C. elegans.

(C) Characterization of the first cell division in 41

species of nematodes with known phylogeny.

Pole-to-pole distances as a function of time are

plotted for four sample species (the solid line in-

dicates the mean, and the shaded region indi-

cates the SD measured for multiple embryos).

The scale bars represent 10 mm.

(D) A model, with no free parameters, in which

spindle traits scale with embryo size as they do

in C. elegans and embryo size is subject to stabi-

lizing selection with a different optimum for each

species is sufficient to explain between-species

variation of these traits. Blue dots (mean 6 SE)

show spindle final length and the position of the

division plane relative to embryo size for the

different species. The red line is the prediction

of the stabilizing selection model, and the green

line is fit to the data. The table compares pre-

dicted coefficients of regression for different

spindle traits with measured ones. Errors on pre-

dicted regression coefficients were calculated by

bootstrapping (see the Experimental Procedures

for details).

See also Figure S4.

size and only indirectly influences the
spindle through the scaling of the spin-
dle with cell size.

Previousworkhas shown that spindles
scale with cell size over the course of
early development [18, 34–40]. Thus, the
scaling of the spindle with cell size drives
its variation over both ontogeny and phy-
logeny. It will be interesting to investigate
whether common mechanisms account
for the scaling of the spindle with cell
size in these different contexts.

Although all the aspects of the spindle
we studied are correlated with cell size,
these traits are only partially determined
by cell size: for example, the partial cor-
relation between cell size and initial
spindle length is only 0.22 (Figure 2F).
This observation is consistent with the
knowledge that many factors unrelated

to cell size contribute to spindle length, such as microtubule
polymerization dynamics and the activity of motor proteins
[15, 16]. The limited correlations of the spindle with cell size,
along with stabilizing selection on cell size, are still sufficient
to determine the nature and extent of within-species variation
in spindles and their changes across nematode species.
The correlated response to selection on cell size cannot

explain all variations in spindles across all Eukaryotes, as
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spindles in distantly related organisms with similar cell sizes
have different morphologies and sizes and different inter-
actions with the nuclear envelope, and vary in other ways
[4, 5, 15, 16]. However, we speculate that similar principles
to those found in this study may apply in other systems: that
many aspects of variation in spindles may be driven by their
correlated responses to other traits under selection. The res-
ponse of correlated traits, particularly the correlation of traits
with body size, has been a major focus of study of evolution
at the organismal level [12, 30, 33] and might be of similar gen-
eral importance for evolution at the subcellular level. For the
nematodes we studied, their cell size during the first mitotic di-
vision is the same as their size at birth. Extensive evidence
demonstrates that size at birth is subject to stabilizing selec-
tion in a wide variety of species [41], consistent with our infer-
ence of stabilizing selection on cell size during the first mitotic
division in nematodes. Different selective pressure may domi-
nate in other contexts, driving different correlated evolutionary
changes in spindles. The presence of significant within-spe-
cies standing genetic variation for spindles and the observa-
tion that spontaneous mutations can rapidly modify spindles
show that they have a broad capacity for such evolutionary
changes.

Our finding of extensive within-species variation for spindles
demonstrates that the ‘‘wild-type’’ behavior of spindles en-
compasses a surprisingly broad range. Evolutionary studies
have consistently found within-species variation for nearly all
attributes at the organismal level [12], and our observations
indicate that similar variation exists at the cell biological level.
This suggests caution in making generalizations about cell
biology from studies performed on only a single natural isolate
or highly inbred lab strain. The existence of within-species
variation is not only important for understanding the evolution
of cellular traits, like we have shown here, it also opens novel
possibilities for the study of mechanistic aspects of cell
biology by allowing the application of powerful approaches
fromquantitative genetics tomap the genetic basis of this vari-
ation and to differentiate correlative and causative relation-
ships between traits [42]. Within-species genetic diversity is
greater in humans than C. elegans [43], suggesting that hu-
mans may display even larger variations in cell biological be-
haviors, which may have implications for disease.

Experimental Procedures

Maintenance and Time-Lapse Differential Interference Contrast

Microscopy of C. elegans Strains

We cultured allC. elegans strains at 24�C on nematode growthmedia (NGM)

plates and fed with Escherichia coli OP50 as described previously [44]. We

dissected adult worms in M9 buffer, mounted embryos on a 4% agar pad

between a slide and a coverslip, and used an eyelash to position multiple

embryos in close proximity. Differential interference contrast (DIC) micro-

scopy was performed on a Nikon Eclipse TE2000-E microscope equipped

with a 603 Plan Apochromat NA 1.2 objective and an oil-immersed

condenser NA 1.4.We acquired seven images every 0.5 swith a Hamamatsu

ORCA-R2 camera, and used a piezo-driven nanopositioning Physik Instru-

mente E-709 to cover a volume of w3 mm at steps of 0.5 mm during this

interval.

Maintenance and Time-Lapse DIC Microscopy of Other

Nematode Strains

We cultured strains other than C. elegans at 20�C on NGM plates and fed

with E. coli OP50 as described previously [44]. We dissected adult worms

in M9 buffer and mounted the embryos on 2% agarose pads. We used

DICmicroscopy to image the first embryonic division every 0.5 swith a Zeiss

Axio Imager A2 microscope equipped with a 1003 Plan Apochromat NA 1.4

objective and a digital Kappa camera (DX4-285FW).

Image Processing and Quantification of Cell-Division Traits

We developed custom-designed image-processing software as described

[45] to track spindle pole-to-pole distance in DIC images of C. elegans em-

bryos from formation of the mitotic spindle upon completion of the first di-

vision. For those embryos that the automated tracking failed, we manually

tracked spindle poles. For each embryo, we measured pole-to-pole dis-

tance as a function of time and fitted a sigmoid function lðtÞ= l0 + l1=

ð1+expð2 ðt2 t0Þ=tÞÞ to the data. We defined initial spindle length as l0,

final spindle length as ðl0 + l1Þ, and elongation rate as l1=4t. t0 is the time

at which the spindle is halfway between its initial and final lengths. We

defined centrosome size as the average size of centrosomes for t>t0 + et.

We manually measured embryo size as the distance between the anterior

and posterior ends of the cortex upon formation of the new cleavage furrow,

when ruffling of the cortex is minimal, and the division-plane position as the

distance of the cleavage furrow from the posterior cortical end of the em-

bryo at the end of cell division. For all strains other than C. elegans, we

manually determined the initial spindle length, final spindle length, and

rate of elongation from the pole-to-pole distance curves of each embryo.

Estimation of Variances, Covariances, and Correlations of

Cell-Division Traits

We used H2boot [26], a bootstrapping software for analysis of multivariate

quantitative genetic data, to measure variances and covariances of cell-di-

vision traits as well as partial correlation coefficients between pairs of traits.

We used the ‘‘one-way ANOVA among RI lines’’ option with 10,000 boot-

strapping runs, and standardized trait values of each embryo by subtracting

from the average and dividing by the SD calculated for all embryos of the

data set. We then used the SD of the traits to calculate variances and covari-

ances with physical units. To calculate the mutational variances per gener-

ation (Vm) for each trait, we subtracted the among-line variancemeasured at

generation zero from the among-line variance measured at generation 250

and divided by 250, the total number of mutation accumulation generations.

We measured the per-generation mutational matrix of variances and co-

variances (M) by subtracting the among-line variance-covariance matrix

measured at generation zero from the among-line variance-covariance ma-

trix measured at generation 250 and dividing by 250.

Estimating the Change in the Mean of Cell-Division Traits in

the MA Lines

The difference in trait means between the generation zero (G0) ancestor and

the MA lines was assessed by solving the general linear model

Y =Treatment+LineðTreatmentÞ+ReplicateðLineðTreatmentÞÞ;

where Y is the trait value, Treatment (MA or G0) is a fixed effect, and Line (G0

pseudoline or MA line) and Replicate are random effects. Variance compo-

nents were estimated by restricted maximum likelihood separately for G0

and MA treatments. Significance was determined by F tests using type III

sums of squares. Degrees of freedom were determined using the Ken-

ward-Roger method [46]. Analyses were performed using theMIXED proce-

dure in SAS version 9.4.

Fecundity Measurements for the C. elegans Natural Isolates

Animals were grown in 96-well microtiter plates with 50 ml of S medium

and HB101 bacterial food in each well. One mid-to-late fourth larval stage

animal was singled out using platinum wire to each well. Animals were

grown for 72 hr in these conditions and the number of offspring per well

was measured on the COPAS BIOSORT (Union Biometrica). We fitted a

quadratic function, F = 2(E 2 E0)
2/u2 + h, to the data measured across

C. elegans natural isolates, where F and E indicate fecundity and embryo

size, respectively, E0 is the optimal embryo size, and u is the strength of

stabilizing selection. We measured the fit parameters for standardized

fecundity (divided by the average fecundity of the natural isolates) and

standardized embryo size (subtracted and then divided by the average

embryo size of the natural isolates), and then scaled them to their relative

values (E0 = 51 mm, u = 0.6 mm21). We calculated the significance of the

quadratic model by contrasting it with a model where fecundity has no

relation with embryo size.

Phylogeny Construction of Nematode Species

We sequenced several portions of the gene encoding RNA polymerase II

from Pristionchus entomophagus, P. maupasi, and Oscheius dolichura.

These sequences were added to the previously published sequences

[6, 47] from other species and a maximum-likelihood phylogram was con-

structed as described before [47].
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Comparative Analysis of Spindle Traits and Embryo Size in Different

Species of Nematodes

We investigated the dynamics of evolutionary changes of embryo size by

comparing the predictions of three different models for the divergence of

embryo size with phylogenetic distance across the species we studied.

For each pair of species, we calculated the square of the difference in em-

bryo size and the approximate phylogenetic distance measured by the sub-

stitutions/site in RNA polymerase II, converted to generations using an esti-

mated 200 million generations separating C. elegans and C. briggsae (see

[32]). We then averaged over species of similar phylogenetic distances

and comparedwith the prediction of three evolutionarymodels for the diver-

gence of embryo size (Figure S4): neutral drift, stabilizing selection with one

optimal embryo size, and stabilizing selection with multiple optimal embryo

sizes.

The neutral drift model predicts that the divergence in embryo size in-

creases linearly with generation number as VgESt=Ne (see [48, 49] for details),

where VgES =0:55 mm2 (see Table S1) and Ne = 10,000 [28]. The neutral drift

model is clearly inconsistent with the data, as it predicts that embryo size

should diverge hundreds of times faster than observed (Figure S4).

The stabilizing selection model with one optimal embryo size predicts

a linear divergence for embryo size for short evolutionary timescales,

which converges to a constant value on longer timescales as described

by VgESð12 expð2 2stÞÞ=2sNe (see [48, 49]). Here s= VmES=VgES , which is

the ratio of the per-generation variance produced by spontaneous muta-

tions for embryo size, and its additive genetic variance indicates the

strength of stabilizing selection on embryo size. Using the values for

VmES =2:173102 3mm2 and VgES =0:55 mm2 from our measurements in

C. elegans (see Table S1), the stabilizing selection model with one optimal

embryo size predicts that divergence in embryo size should not increase

with phylogenetic distance across the species that we studied, which

strongly deviates from observations (Figure S4).

We next considered the model of stabilizing selection with multiple

optimal embryo sizes. The simplest model is to assume that the optimum

embryo size varies over phylogeny with Brownian dynamics, in which

case the divergence in embryo size is at+ VgESð12 expð22stÞÞ=2sNe (see

[48, 49]). Here, a characterizes how the optimal embryo size varies over phy-

logeny, which could be due to the dynamics of changes in the ecological

niches of the species. A best fit gives a=5:831027 mm2, and is consistent

with the divergence of embryo size across the species we studied (see Fig-

ure S4). A more complex model of the movement of the optimum might

better capture the details of the dynamics of the divergence of embryo

size, but even the highly simplified Brownian model correctly captures the

evolutionary trends.

Given stabilizing selection on embryo size with different optimal values for

other nematode species we studied and a linear relation between spindle

traits and embryo size, we predicted the slope of the linear regression

from our measurements in C. elegans. The slope of the regression is Gi,ES/

GES,ES (see [33] for details), where Gi,ES is the genetic covariance of trait i

and embryo size (ES), and GES,ES is the genetic variance of embryo size

measured in C. elegans. We measured the regression slope and the SE

with bootstrapping.

Supplemental Information

Supplemental Information includes four figures and two tables and can be

found with this article online at http://dx.doi.org/10.1016/j.cub.2014.12.060.
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Figure S1: Ranked order variation of cell division traits across C. elegans natural 

isolates, Related to Figure 2.  Error bars indicate standard error of the mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure S2: Schematic illustration of mutation accumulation (MA) assay, Related 

to Figure 3.  Starting from a pool of genetically identical worms, MA lines are 

simultaneously initiated by transferring a randomly selected hermaphrodite in each 

generation for ~250 generations.  Non-lethal and non-sterile spontaneous mutations 

are allowed to accumulate over time in an effectively neutral fashion.  Determining 

the distribution of a phenotypic trait among the MA lines provides a measure of the 

effect of spontaneous mutations on that trait. 
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Figure S3: Absence of correlation between cell division traits and geographic 

location and local temperature across C. elegans natural isolates, Related to 

Figure 4.  Absolute change in spindle final length (A) and embryo size (B) as a 

function of geographic distance of the isolation location between pairs of C. elegans 

natural isolates.  No significant correlation was observed for all cell division traits.  

(C) Embryo size as a function of average isolation temperature across C. elegans 

natural isolates.  No significant correlation between embryo size and local 

temperature was observed.  (D) Table of regression coefficients of cell division traits 

on average isolation temperature of C. elegans natural isolates (mean ± s.e.).  No 

significant correlation between cell division traits and local temperature was observed. 
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Figure S4: Divergence of embryo size with phylogenetic distance, Related to 

Figure 5. Divergence of embryo size with phylogenetic distance across different 

species in Figure 5 is not compatible with expectations of models of neutral drift or 

stabilizing selection with a single optima, but is consistent with a model of stabilizing 

selection in which each species has its own optimal embryo size. Gray dots are the 

divergence in embryo size for pair of species and red dots show the average 

divergence in embryo size. 
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(µm2) 

1.88E-5 
(µm) 

Elongation Rate 1.00 ± 0.06 
(µm2/min2) 

0.20 ± 0.04 
(µm2/min2) 

0.80 ± 0.04 
(µm2/min2) 

3.37E-4 ± 7.46E-5 
(µm2/min2) 

-2.77E-5 
(µm/min) 

Centrosome Size 37.62 ± 2.89 
(µm4) 

6.52 ± 1.37 
(µm4) 

31.10 ± 2.03 
(µm4) 

4.70E-3 ± 2.50E-3 
(µm4) 

1.72E-5 
(µm2) 

Division Plane 2.25 ± 0.08 
(µm2) 

0.15 ± 0.03 
(µm2) 

2.10 ± 0.07 
(µm2) 

4.11E-4 ± 1.21E-4 
(µm2) 

-3.64E-5 
(µm) 

Embryo Size 5.72 ± 0.21 
(µm2) 

0.55 ± 0.09 
(µm2) 

5.17 ± 0.19 
(µm2) 

2.17E-3 ± 8.32E-4 
(µm2) 

2.60E-5 
(µm) 

 

Table S1: Phenotypic variance (Vp), genetic variance (Vg), and environmental 

variance (Ve) calculated for spindle traits (see Experimental Procedures for details). 

The amount of genetic variance in a single generation (Vm) and the changes in the 

traits mean (Δm) generated by spontaneous mutations is shown for each trait (see 

Experimental Procedures for details).  For all traits, the variances are significantly 

different from zero, while the change in the trait means (Δm) are not significantly 

different from zero. 

 

 

 

 

 

 

 

 



 

S2 A initial length final length elongation rate centrosome size division plane embryo size 
initial length 6.14E-2±1.10E-2 3.27E-2±3.05E-2 -1.32E-2±3.04E-2 2.91E-1±1.97E-1 3.04E-2±2.76E-2 6.01E-2±4.53E-2 

final length 4.60E-2±4.27E-2 2.44E-1±4.21E-2 6.38E-2±5.81E-2 6.08E-1±3.44E-1 8.78E-2±6.22E-2 2.41E-1±1.15E-1 

elongation rate 2.68E-1±7.01E-2 3.11E-1±7.53E-2 1.99E-1±4.15E-2 -4.09E-1±2.12E-1 4.44E-2±5.05E-2 8.07E-2±9.30E-2 

centrosome size 2.55E-2±6.92E-2 2.53E-1±8.15E-2 -1.99E-1±5.50E-2 6.52±1.37 9.01E-2±2.54E-1 5.76E-1±4.64E-1 

division plane 1.75E-1±4.51E-2 4.04E-1±6.50E-2 2.75E-1±6.91E-2 1.06E-1±6.85E-2 1.51E-1±3.09E-2 2.36E-1±1.01E-1 

embryo size 2.22E-1±4.67E-2 7.02E-1±8.18E-2 4.46E-1±7.75E-2 2.40E-1±7.50E-2 7.09E-1±7.36E-2 5.51E-1±9.16E-2 

 

S2 B initial length final length elongation rate centrosome size division plane embryo size 
initial length 7.06E-5±1.07E-4 8.44E-5±2.28E-4 -2.00E-5±9.56E-5 2.67E-5±6.19E-4 5.99E-5±1.92E-4 9.28E-5±4.82E-4 

final length 5.60E-2±6.48E-2 4.20E-4±1.72E-4 2.38E-4±1.77E-4 8.59E-4±9.18E-4 3.67E-4±2.94E-4 7.75E-4±7.48E-4 

elongation rate 2.58E-1±7.81E-2 3.15E-1±9.45E-2 3.37E-4±7.46E-5 1.65E-4±4.58E-4 2.55E-4±1.74E-4 6.92E-4±4.35E-4 

centrosome size 5.55E-2±5.90E-2 2.91E-1±8.91E-2 -6.37E-2±6.43E-2 4.70E-3±2.50E-3 1.02E-3±7.63E-4 1.60E-3±1.93E-3 

division plane 1.53E-1±6.18E-2 5.00E-1±1.02E-1 2.85E-1±8.11E-2 1.88E-1±7.04E-2 4.11E-4±1.21E-4 9.02E-4±6.60E-4 

embryo size 1.83E-1±9.08E-2 7.17E-1±1.48E-1 4.43E-1±1.17E-1 3.11E-1±1.04E-1 7.49E-1±1.43E-1 2.17E-3±8.32E-4 

 

S2 C initial length final length elongation rate centrosome size division plane embryo size 
initial length 1.90E-5±4.35E-5 1.04E-4±1.34E-4 -1.88E-5±1.09E-4 -4.84E-5±5.63E-4 3.10E-5±8.99E-5 1.59E-4±2.36E-4 

final length 1.86E-2±7.30E-2 1.97E-4±2.14E-4 1.69E-4±2.34E-4 3.70E-5±1.22E-3 2.51E-4±2.44E-4 3.86E-4±6.74E-4 

elongation rate 2.73E-1±1.06E-1 2.55E-1±9.87E-2 2.36E-4±1.04E-4 -1.71E-4±5.85E-4 1.39E-4±1.93E-4 4.08E-4±4.61E-4 

centrosome size 6.98E-2±8.41E-2 2.84E-1±1.12E-1 -6.95E-2±7.91E-2 5.11E-3±4.07E-3 5.43E-4±9.62E-4 8.27E-4±2.10E-3 

division plane 1.56E-1±6.53E-2 4.35E-1±8.97E-2 2.47E-1±8.59E-2 1.50E-1±8.31E-2 3.14E-4±9.92E-5 5.62E-4±4.90E-4 

embryo size 1.87E-1±1.01E-1 6.73E-1±1.50E-1 4.23E-1±1.26E-1 2.80E-1±1.15E-1 7.03E-1±1.56E-1 9.87E-4±6.42E-4 

 

S2 D initial length final length elongation rate centrosome size division plane embryo size 
initial length 1.22E-4±2.10E-4 6.53E-5±4.36E-4 -2.12E-5±1.57E-4 1.02E-4±1.10E-3 8.87E-5±3.73E-4 2.69E-5±9.34E-4 

final length 9.33E-2±1.07E-1 6.44E-4±2.70E-4 3.08E-4±2.65E-4 1.68E-3±1.37E-3 4.83E-4±5.36E-4 1.16E-3±1.34E-3 

elongation rate 2.43E-1±1.15E-1 3.76E-1±1.61E-1 4.39E-4±1.07E-4 5.01E-4±7.06E-4 3.72E-4±2.89E-4 9.76E-4±7.37E-4 

centrosome size 4.12E-2±8.27E-2 2.99E-1±1.39E-1 -5.80E-2±1.01E-1 4.29E-3±2.89E-3 1.49E-3±1.18E-3 2.37E-3±3.24E-3 

division plane 1.49E-1±1.05E-1 5.66E-1±1.82E-1 3.24E-1±1.38E-1 2.25E-1±1.14E-1 5.08E-4±2.22E-4 1.24E-3±1.22E-3 

embryo size 1.78E-1±1.51E-1 7.62E-1±2.55E-1 4.64E-1±1.98E-1 3.42E-1±1.73E-1 7.96E-1±2.39E-1 3.34E-3±1.53E-3 

 

Table S2: Matrices of genetic variances (green), covariances (red), and correlation 

(blue) of cell division traits (A) C. elegans natural isolates, (B) average of C. elegans 

N2 and PB306 mutation accumulation lines, (C) C. elegans N2 mutation 

accumulation lines, (D) C. elegans PB306 mutation accumulation lines. 
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