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a b s t r a c t

We develop a continuum mechanics model of blastocyst hatching. The blastocyst and the zona
pellucida are modeled as concentric thick-walled initially spherical shells embedded in a viscous
medium. Each shell is characterized by a nonlinear elastic–viscous–constitutive relation. The stiffer
outer shell (the zona pellucida) contains an opening. The softer inner shell (the blastocyst) is subject
to a continually increasing pressure, which can eventually drive the escape of the inner shell from the
outer shell (‘‘hatching’’). The focus is on the continuum mechanics modeling framework and illustrating
the sort of quantitative predictions that can be made. Numerical examples are presented for the
predicted dependence of the evolution of the escape process on values of parameters characterizing
the constitutive response of the shells, on the viscosity of the external medium and on the size of the
opening in the zona pellucida.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Mammalian oocytes (immature eggs) are surrounded by a
lycoprotein hydrogel called the zona pellucida [1–3]. After fer-
ilization, the early embryo initially develops inside the zona
ellucida, but ultimately must hatch out of the zona pellucida
n order to implant into the uterine wall. Escape of the embryo
rom the zona pellucida is believed to involve both chemical and
echanical processes. Chemically, the embryo secretes enzymes

hat degrade the zona pellucida. Mechanically, the embryo, called
blastocyst at this stage, actively pumps ions into an intercellular
pace (the blastocele) [4,5]. The resulting osmotic pressure causes
he blastocele to grow larger, and the blastocyst can eventually
xit through an opening in the degrading zona pellucida. In vitro
ertilization (IVF) clinics often perform an ‘‘assisted hatching’’
rocedure that aims to help the blastocyst hatch by creating
n opening in the zone pellucida [6]. After successful hatching
he blastocyst implants into the lining of the uterus so that the
mbryo can continue to develop. However, hatching is not always
uccessful.
Despite the importance of hatching, from the perspectives of

oth fundamental developmental biology and clinical IVF, the
rocess remains poorly understood. Here, we develop an ide-
lized continuum mechanics model of blastocyst hatching. The
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blastocyst/zona pellucida structure is modeled as consisting of
two concentric shells with the inner shell being the blastocyst
and the outer shell the zona pellucida. The blastocyst/zona pel-
lucida structure is subject to a monotonically increasing internal
pressure. The two shells are connected by linear compressive
springs along their interface. The outer shell (the zona pellucida)
has an opening through which hatching takes place. The effect
of the surrounding viscous medium is idealized by a body force
that is proportional to the material velocity. Full dynamic, finite
deformation finite element calculations are carried out with the
deformations constrained to remain axisymmetric. Although it is
expected, and computational results verify, that material inertia
plays a negligible role, the dynamic formulation is computa-
tionally convenient and reasonably efficient. Numerical examples
illustrate the sort of quantitative predictions that can be obtained.

2. Problem formulation

2.1. Initial/boundary value problem

The blastocyst/zona pellucida structure is modeled as two
concentric thick-walled initially spherical shells in a viscous fluid
with a monotonically increasing internal pressure. The inner
shell, the blastocyst, is relatively soft while the outer shell, the
zona pellucida, is stiffer. The two shells are taken to be in contact
initially and are free to slide over each other. The configuration
analyzed is shown in Fig. 1.

https://doi.org/10.1016/j.eml.2020.101132
http://www.elsevier.com/locate/eml
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Fig. 1. Sketch of the configuration analyzed. The blastocyst and zona pellucida
re each modeled as an initially spherical shell, with Ri the inner radius of the
lastocyst, Rs the interface radius, Ro is the outer radius of the zona pellucida
nd θ0 characterizes the opening in the zona pellucida.

The calculations of the deformation histories are carried out
sing a Lagrangian finite deformation convected coordinate for-
ulation for a three dimensional solid with the restriction that

he deformations are axisymmetric. Material points are identified
y their positions (y1, y2, y3) in the initial, stress free, configu-
ation with the identification in polar coordinates of y1 = r ,
2

= φ and y3 = z. Due to the axisymmetry all field quantities
re independent of φ.
The internal pressure is applied on the inner surface r = Ri,

he boundary between the two shells on which sliding occurs is
t r = Rs and the outer radius is Ro. The opening in the outer
pherical shell (the zona pellucida) is presumed to be present
t the initiation of pressure loading and the size of the open-
ng is identified by the angle θ0 from the z-axis in the initial
onfiguration as shown in Fig. 1.
The material point initially at X in the reference configuration

s at x in the current configuration. The displacement vector u and
he deformation gradient F are then defined by

= x − X , F =
∂x
∂X

(1)

Modeling the interaction between the two shells, the blas-
tocyst and the zona pellucida and the surrounding fluid is a
complex fluid–structure interaction problem. Here, the effect of
the interaction of the surrounding fluid on the shells is modeled
as a viscous body force fv . The finite element calculations are
based on the principle of virtual work which is written in the
reference configuration in the form.∫

V
s : δFdV +

∫
V
fv · δudV −

∫
Ss
T · δ[u]dS

= −

∫
Sp
pα · n · δudS −

∫
V

ρ
∂2u
∂t2

· δudV (2)

Here, (·) denotes the vector inner product, (:) denotes the second
rder tensor inner product, t is time, s is the (unsymmetric)

nominal stress tensor, s = F−1
· τ with the Kirchhoff stress

τ = (det F)σ where σ is the Cauchy stress, fv is a viscous body
force and ρ is the mass density. The material volume in the
reference configuration V is the sum of the volume of the inner
shell (the blastocyst) V and the volume of the outer shell (the
i

2

zona pellucida) Vo, Sp is the surface r = Ri in the reference
configuration where pressure is applied, p is the pressure and
α = det(F)F−T where F−T is the inverse of the transpose of F
and n is the normal to Sp. The surface Ss, given in the reference
configuration by r = Rs, is the surface where sliding of the
inner shell (the blastocyst) occurs along the outer shell (the zona
pellucida) during hatching, T is a traction introduced along r =

Rs to inhibit interpenetration of the two shells and [u] is the
displacement jump along r = Rs. During hatching the surface
Ss changes as the inner shell (the blastocyst) separates from the
outer shell (the zona pellucida).

The viscous body force used to represent friction between the
fluid and the material that occurs as water passes through the
surface of the expanding blastocyst and is taken to be propor-
tional to the velocity vector v = ∂u/∂t at a fixed material point,
so that

fv = cv (3)

It is expected that the viscous force associated with the ex-
ternal medium is much larger than the material inertia force.
However, the inertia term stabilizes the calculations so that the
value of density ρ is chosen to maintain numerical stability while
having a small effect on the results (larger values of ρ lead to
more stable calculations). Thus, the density ρ is regarded as a
parameter of the numerical implementation rather than as being
representative of the actual material density.

The shells representing the blastocyst and the zona pellucida
are taken to be in contact initially although there may be a thin
liquid layer separating them. The spring force penalizes interpen-
etration and acts in the direction of the current normal to the
surface r = Rs. It is convenient to calculate this term in the
current configuration, so that∫
Ss
T · δ[u]dS =

∫
S̄s
T̄n̄δ[ū]n̄dS̄ (4)

where T̄n̄ = T̄ · n̄ and [ū]n̄ = [ū] · n̄ and a superposed bar denotes
quantities in the current configuration.

The traction, T̄n̄, is related to the displacement jump, [ū]n̄, via

¯n̄ =

⎧⎨⎩±K
[ū]n̄
δn

[ū]n̄ ≤ 0

0 [ū]n̄ > 0
(5)

The spring stiffness is essentially a penalty parameter and, as
for any penalty method, if the value of the penalty parameter,
K/δn in Eq. (5) is taken to be too large, the calculation becomes
numerically unstable. If the value of K/δn is taken to be too small,
significant overlap of the inner shell (the blastocyst) and the outer
shell (the zona pellucida) occurs. The choice of an appropriate
value of K/δn is problem dependent. An alternative approach
would be to enforce the constraint [ū]n̄ = 0 directly. A few
calculations were carried out exploring the use of this constraint
on part of the interface where [ū]n̄ < 0. This had a small effect
on the results and did not significantly improve the numerical
stability. In addition, the coding to enforce this constraint in
general is more complex, so the results to be presented were
obtained using the penalty approach of Eq. (5). It is also worth
noting that our framework can be modified to account for more
complex interface descriptions and to include tangential as well
as normal components.

The finite element implementation follows that in Refs. [7]
and [8]. For the stress work term, the first volume integral on the
left hand side of Eq. (2), eight node quadratic elements are used
with four point Gauss integration. The evaluation of the body
force and inertia volume integrals also use eight node quadratic
elements but with nine point Gauss integration. The integration
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long the surface Sp is carried out using four point Gauss inte-
ration in each surface element. On the other hand, three point
auss integration is used in the deformed configuration along the
nterface surface S̄s in Eq. (4).

The spring force in Eq. (5) is calculated at each Gauss inte-
ration point on the inner shell (the blastocyst). The element
ontaining the nearest point on the outer shell (the zona pellu-
ida) to that Gauss integration point is known from the previous
ime step. The element on the outer shell is approximated by
straight line and the analytical expression for the distance

etween a given point and a line is used to calculate [ūn̄]. If
the nearest point lies outside the assumed element, the element
number on the outer shell is updated and the distance to the
nearest point on that updated element is calculated. The same
procedure is used for the Gauss integration points on the outer
shell. The sign of [ū]n̄ is the same for the inner shell (the blasto-
cyst) and the outer shell(the zona pellucida) but the spring forces
have opposite signs.

2.2. Constitutive relation

The importance of accounting for material rate dependence in
modeling the mechanical response of the zone pellucida is shown
in Ref. [3]. Material rate dependence is expected to play an even
more important role for modeling the softer blastocyst. Here, the
rate of deformation tensor, d, in each shell is taken to be the
sum of an elastic (actually hypoelastic) contribution and a linear
viscous contribution so that

d = de + dv (6)

where d = sym(Ḟ · F−1), (˙) denotes ∂( )/∂t and

dv =
1
µ

τ ′ , de =
1 + ν

E
τ̂ −

ν

E
tr(τ̂)I (7)

Here, τ̂ is the Jaumann derivative of Kirchhoff stress, E is Young’s
odulus, ν is Poison’s ratio, µ is the material viscosity, tr( )
enotes the trace, I is the second order identity tensor and

′
= τ −

1
3
tr(τ)I (8)

The elastic contribution in Eq. (7) is a hypoelastic relation in
that it is not in general derivable from a strain energy function.
However, for deformation histories with fixed principal axes (as
in spherically symmetric expansion of a sphere) it is equivalent to
a hyperelastic relation between Kirchhoff stress and logarithmic
strain.

The resulting stress-rate, τ̂, versus rate of deformation, d,
relation has the form

τ̂ =
E

1 + ν

[
d −

1
µ

τ ′
+

ν

1 − 2ν
tr(d)I

]
(9)

Some calculations were carried out using a principal axis
representation of a nonlinear hyperelastic relation, [9,10] (see
also [11]), for the elastic contribution that is equivalent to Eq. (9)
for fixed principal axes. It was found that those results differed
little from those based on Eq. (9).

The reason for using Eq. (9) is that the rate form is convenient
for exploring the role of large strain stiffening, namely in some
calculations we specify

E =

{
Ea ϵmx ≤ ϵs

Eb ϵmx > ϵs
(10)

and

µ =

{
µa ϵmx ≤ ϵs

µb ϵmx > ϵs
(11)

where ϵmx is a maximum principal strain and ϵs is a specified
transition value.
 t

3

3. Results

3.1. Spherical membrane

Spherical membrane models have been used to model a vari-
ety of biophysical processes, e.g. [4,5,12]. In particular, modeling
the expansion of the blastocyst as an internally pressurized spher-
ical membrane neglects the effects of the opening in the zona
pellucida and of the constraint imposed by the zona pellucida
on the stress and deformation states, but can give insight into
the dependence on the constitutive response assumed for the
blastocyst, e.g. [4,5]. Here, we summarize some results for a
membrane that is characterized by the constitutive relation in
Section 2.2.

We first consider the response of an elastic spherical mem-
brane with constant Young’s modulus Ea

= Eb
= E and subject

to internal pressure and, for simplicity, the material is taken to
be incompressible so that integrating Eq (9) gives

σi =
2
3
Eϵi + σh (12)

where σi are the principal Cauchy stresses, ϵi are the principal
logarithmic strains and σh is the mean normal stress, positive for
hydrostatic tension.

Since σ3 = 0 and ϵ3 = −(ϵ1 + ϵ2), the expression for the
in-membrane stresses in Eq. (12) can be written as

σ1 =
2
3
E(2ϵ1 + ϵ2) , σ2 =

2
3
E(2ϵ2 + ϵ1) (13)

The state of stress in the membrane is one of equal biaxial
tension so that ϵ1 = ϵ2 = ϵ and σ1 = σ2 = σ . The internal
pressure is related to σ via

p = 2
h
R
σ (14)

where h is the current thickness and R is the current radius.
Incompressibility requires that hR2

= h0R2
0, with h0 and R0 being

the initial thickness and radius, respectively, so that

p = 2
h0

R0

σ

λ3 (15)

here λ = R/R0 = exp(ϵ).
The pressure reaches a maximum, ṗ = 0, when σ̇ − 3σ ϵ̇ = 0,

o that from Eq. (13)

m =
2
3
E (16)

nd ϵm = 1/3 so that λ3
m = exp(1) = e. Hence, the maximum

ressure, pm is given by

pm
E

=
4
3e

(
h0

R0

)
(17)

The pressure cannot exceed pm under quasi-static loading condi-
tions.

Bifurcation instabilities can occur after the maximum pressure
but for larger values of stress if the expansion of the sphere
is prescribed rather than the pressure. A long wavelength local
thinning bifurcation instability mode [13] becomes possible at
σ = σc where

σc =
3
2
σm = E (18)

A loss of ellipticity, [14,15], (which corresponds to an imagi-
ary wave speed) can also occur within the plane stress context,
he critical strain for equal biaxial tension at loss of ellipticity is
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= 2/3 from Eq. (45) of [15] with N = 1, so that from Eq. (13)
his occurs at σ = σℓ, with

ℓ =
4
3
E (19)

When material rate viscosity is accounted for and constant
o that µa

= µb
= µ, the constitutive relation Eq. (9) for the

embrane specializes to

˙i =
2
3
E

[
ϵ̇i −

1
µ

σ ′

]
+ σ̇h (20)

where µ is the viscosity. As µ → ∞, the elastic response is
recovered.

An explicit expression in terms of the membrane stresses is
obtained using σ̇3 = 0, ϵ̇3 = −(ϵ̇1 + ϵ̇2) and σ̇3 = −(σ̇1 + σ̇2) to
give

σ̇1 =
2
3
E

[
2ϵ̇1 + ϵ̇2 −

1
µ
(2σ ′

1 + σ ′

2)
]

,

σ̇2 =
2
3
E

[
2ϵ̇2 + ϵ̇1 −

1
µ
(2σ ′

2 + σ ′

1)
] (21)

For equal biaxial tension, σ1 = σ2 = σ , σ ′

1 = σ ′

2 = σ/3,
Eq. (21) gives

σ̇ +
1
tc

σ = 2Eϵ̇ (22)

here

c =
3µ
2E

(23)

The simplest case that gives qualitative insight into the effect
f material viscosity is to regard the expansion rate ϵ̇ = Ṙ/R as a
pecified constant. Then, for equal biaxial tension the solution is

(t) = 2Eϵ̇tc [1 − exp(−t/tc)] = 3µϵ̇ [1 − exp(−t/tc)] (24)

The maximum pressure, i.e. ṗ = 0, still occurs when σ̇−3σ ϵ̇ =

0, which gives

pm
E

= 4
(
h0

R0

)(
1

exp(3ϵm)

)
ϵm

tm/tc + 3ϵm
(25)

here tm is the time at which the pressure maximum is attained
nd ϵm = ϵ̇tm = ln(λm).
As tc → ∞, it can be shown that ϵm → 1/3 and pm/E in

q. (25) approaches the value in Eq. (17). As tc → 0, ϵm and pm
ach approach zero.
For spherical expansion of a spherical membrane into an ex-

ernal medium with a viscosity proportional to the membrane
elocity, the effective pressure acting on the membrane is the dif-
erence between the internal pressure p and the external pressure
mṘ, so that Eq. (15) becomes

− cmṘ = 2
h0

R0

σ

λ3 (26)

here c is the external viscous resistance. If Ṙ is constant then
the condition for a maximum pressure is not affected. If Ṙ varies
with time then the maximum pressure is reached when the sum
of cR̈ and the time derivative of the right hand side of Eq. (26)
vanish.

In the circumstances of interest, the soft inner shell (the blas-
tocyst) is surrounded by the stiff outer shell (the zona pellucida).
With no opening in the outer shell, expansion of the inner shell
is limited by the expansion of the outer shell and the internal
pressure can exceed pm. If at some value of the internal pressure
p > pm, the stiff external outer shell were abruptly removed,
the inner shell would tend to abruptly expand, with the rate of
expansion reduced by the material viscosity, by the viscosity of
4

the external medium and, in dynamic calculations by material
inertia. The inner shell could then expand uniformly until large
enough internal stresses develop to trigger an instability.

In the circumstances of interest, the predicted response is set
by a complex interaction between, the material properties taken
to model the blastocyst (the inner shell) and the zona pellucida
(the outer shell), the rate of pressure increase, the interaction
with the external medium and the size of the opening in the
outer shell. The opening in the outer shell gives a possibility of
relaxing stresses in the inner shell by expanding through the
opening and ‘‘escaping’’ from the outer shell. However, for a
sufficiently small opening in a sufficiently stiff outer shell, the
response will approach the case of a closed outer shell. These
idealized scenarios give insight into the range of responses that
can be expected in the numerical solutions.

3.2. Numerical results

Numerical results are presented that illustrate some of the
quantitative predictions that can be made with the modeling
framework. Presuming that the material inertia term plays a
minimal role (as verified computationally), there are three char-
acteristic parameters of the boundary value problem: (i) a length
scale, taken to be the inner radius Ri; (ii) a stress measure,
taken to be Ei, Young’s modulus of the inner shell; and (iii) a
characteristic time, which using Eq. (23) as a guide, is taken to
be ti = 3µa

i /2E
a
i . If all lengths are normalized with Ri, all stress

measures with Ei and all times with ti, the governing equations
(with the inertia term deleted) are in non-dimensional form and
therefore so are the results. For example, the normalized viscosity
of the external medium is cN = cdR2

i /(Eiti) where cd is the
rescribed viscosity.
The finite element implementation follows that in [7] where

dditional details and references are given. The finite element
iscretization of Eq. (2) uses eight node quadratic displacement
lements with four point Gauss integration for the force term in
ach element and nine point Gauss integration for the viscous
orce and mass terms in each element. The pressure surface
ntegral is calculated using four Gauss points along each surface
lement whereas the spring force term along R = Rs is evaluated

using three point Gauss integration. Explicit time integration is
carried out using a Newmark-β method with γ = 1/2 and β = 0.

The fixed parameters in the results to be presented are Rs/Ri =

.2, Ro/Ri = 1.4, Ea
o/E

a
i = 4.286, Eb

o/E
a
o = 1.0, µb

o/µ
a
o = 1.0, and

ṗti/Ei = 0.375 × 10−3. The normalized density in all calculations
was taken to be ρN = ρdR2

i /(Et
2
i ) = 9.14 × 10−3 where ρd is the

prescribed density.
The finite element mesh used in the calculations has 5 ele-

ments across the inner shell (the blastocyst) Ri ≤ r ≤ Rs, 5
elements across the outer shell (the zona pellucida) Rs ≤ r ≤ Ro
and 92 elements along −90◦

≤ φ ≤ 90◦.
The presumption that the material inertia term plays a mini-

mal role in the computations was tested by carrying out a calcu-
lation with the inertia term set to zero and using an explicit Euler
time stepping scheme. The predicted pressure–volume response
and the predicted evolution of the deformed blastocyst/zona pel-
lucida structure were nearly identical to those obtained from the
full dynamic calculation even though in the latter stages of the
full dynamic calculation the kinetic energy was up to 6% of the
stress work; for example, the calculation with the inertia term
set to zero reached V/V0 = 16 at p/Ea

i = 0.0134 whereas the
reference calculation reached V/V0 = 16 at p/Ea

i = 0.0136.
However, the time step required for numerical stability for the
calculation with the inertia term set to zero was a factor of
about 500 smaller than the time step that could be used for
the full dynamic calculations. With inertia neglected, an implicit
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Fig. 2. Initial finite element meshes. (a) 24 elements in the opening so that θ0 = 47.0◦ . (b) 11 elements in the opening so that θ0 = 21.5◦ .
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ime stepping scheme could be used that would allow much
arger time steps over much of the deformation history. However,
onvergence of such iterations can be problematic when a rapid
hange in stress state and/or deformation state takes place (as
ccurs in most calculations here) unless the time step is taken
o be very small. Furthermore, an iterative approach is more
omplex to code and so was not pursued here.
Results are presented for four calculations with θ0 = 47.0◦ as

n Fig. 2a (there are 24 elements in the opening), and µa
o/µ

a
i = 8.0

o that the characteristic time associated with the outer shell is
µa

o/2E
a
o = 1.87ti. The normalized stiffness of the springs along

= Rs is taken to be KRi/δnEi = 3.0. In two of the calculations
= 0 while in the other two calculations c = cN = cdR2

i /(Eiti) =

.0343.
The four calculations with θ0 = 47.0◦, are specified by:

Case 1: eR = Eb
i /E

a
i = 1, µR = µb

i /µ
a
i = 1, c = 0.

Case 2: eR = Eb
i /E

a
i = 1, µR = µb

i /µ
a
i = 1, c = cN .

Case 3: eR = Eb
i /E

a
i = 3, µR = µb

i /µ
a
i = 32 with ϵs = 0.90,

c = 0.
Case 4: eR = Eb

i /E
a
i = 3, µR = µb

i /µ
a
i = 32 with ϵs = 0.90,

c = cN .

The evolution of the enclosed volume versus pressure for these
our cases is shown in Fig. 3. The pressure–volume response for all
our cases is essentially the same until p/Ea

i ≈ 0.0125. Consistent
ith the membrane expression Eq. (26) the external medium
iscosity delays expansion but the magnitude of the effect de-
ends on the constitutive characterization of the inner shell (the
lastocyst). The external medium viscosity (with cN = 0.0343)
as only a small effect on the response when eR = µR = 1 but has

a large effect on the response when eR = 3, µR = 32. When eR =

µR = 1, the enclosed volume increases rapidly at nearly constant
pressure of p/Ea

i ≈ 0.014, much like expected when a maximum
pressure is attained. For a membrane with the material properties
(Ea

i , µ
a
i ) and the thickness to mean radius ratio of the inner shell,

and estimating ϵ̇ ∝ ṗ at small strains, Eq. (25) gives pm/Ea
i ≈

0.004. For an elastic membrane with the same thickness to mean
radius ratio pm/Ea

i ≈ 0.09 from Eq. (17), which shows the large
effect of material viscosity on the pressure–volume response. The
pressure at which the rapid enclosed volume change occurs in
Fig. 3 is greater than the membrane value from Eq. (25) for two
reasons: (i) the constraint on expansion imposed by the outer
shell; and (ii) the membrane approximation underestimates the
pressure needed to attain a given enclosed volume for a finite
thickness shell. An axisymmetric finite element solution for an
unconstrained inner shell gives pm/E ≈ 0.012 so that for θ0 =

◦
7.0 , reason (ii) most likely dominates.

5

Fig. 3. Volume expansion, V/V0 versus normalized pressure, p/Ea
i , for four cases

with θ0 = 47.0◦ . The linear calculations are carried out with eR = Eb
i /E

a
i = 1

nd µR = µb
i /µ

a
i = 1 while the nonlinear calculations have eR = Eb

i /E
a
i = 3 and

R = µb
i /µ

a
i = 32. Two calculations have c = 0 and two have c = cN = 0.0343.

ll other parameters are the same for all four calculations and are given in the
ext.

For all four cases in Fig. 3 until p/Ea
i ≈ 0.0125 the inner shell

xpands but does not separate from the outer shell. This is shown
or case 1, eR = 1, µR = 1 and cN = 0, in Fig. 4a. As the pressure
ontinues to increase, the bulging increases until the inner shell
egins to separate from the outer shell and the enclosed volume
ncreases at a nearly constant pressure. For case 1, the hatching
rocess is essentially complete at p/Ea

i = 0.0135, as shown
n Fig. 4b. Regarding the inner shell as a spherical membrane
f uniform thickness and estimating the average stress in the
lastocyst from Eq. (14) gives σ/Ea

i = 0.24. However, the stress
istribution in the inner shell (the blastocyst) is not uniform and
ocally the stress magnitude can be larger.

The stress in the inner shell increases rapidly as expansion in-
reases and the calculation becomes numerically unstable shortly
fter the deformation stage shown in Fig. 4b. Such a numerical
nstability eventually occurs in all calculations here and is associ-
ted with the magnitude of the maximum principal stress in the
nner shell becoming equal to or larger than the value of Young’s
odulus. One possibility is that such a large stress level induces a
echanical instability as noted in Section 3.1 for a membrane but
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V

n
n

Fig. 4. Deformed configurations for case 1, the calculation with θ0 = 47.0◦ , Eb
i /E

a
i = 1, µb

i /µ
a
i = 1 and c = 0. (a) V/V0 = 3.09, p/Ea

i = 0.0125, t/ti = 33.3. (b)
/V0 = 6.67, p/Ea

i = 0.0135, t/ti = 36.1.
Fig. 5. Deformed configurations for case 2, the calculation with θ0 = 47.0◦ , Eb
i /E

a
i = 1, µb

i /µ
a
i = 1 and c = cN . (a) V/V0 = 4.00, p/Ea

i = 0.0133, t/ti = 35.5. (b)
V/V0 = 12.3, p/Ea

i = 0.0143, t/ti = 38.0.
a similar mechanical instability occurs in the context of a three
dimensional framework, [14,16]. Another possibility is that the
large mesh distortions associated with the large stresses induce
a numerical instability before the mechanical instability occurs.
Whether or not the instability that occurs in the calculations here
is induced by the mesh distortions or is a consequence of a me-
chanical instability cannot be decided based solely on numerical
calculations. It is worth noting that large stresses occurred in the
exploratory calculations where inertia was neglected and where
the constraint [ū]n̄ = 0 was enforced on part of the interface.

An external medium viscosity value of cN = 0.0343 leads
to increased stress and strain levels in the inner shell. Using
Eq. (14) to estimate the average stress level in the configuration
in Fig. 5b gives σ/Ea

i = 0.37. For the nonuniform stress distri-
bution, the maximum principal Kirchhoff stress at each Gauss
integration point can be calculated1 At p/Ea

i = 0.0133, Fig. 5a,
the configuration is nearly the same as for the calculation with
c = 0 in Fig. 4a. However, shortly after the state shown in Fig. 5b
where p/Ea

i = 0.0143, a maximum principal stress value greater
than Ea

i is attained locally at the intersection of the inner shell
with the z-axis and the calculation becomes numerically unstable.
The external medium viscosity has two competing effects: from

1 Since both the inner shell and the outer shell materials are taken to be
early incompressible, Kirchhoff stress values and Cauchy stress values are
early equal.
6

Eq. (26) it tends to reduce the effective pressure acting on the
inner shell; on the other hand, when expansion is constrained (by
the outer shell), it leads to an increased stress magnitude.

Fig. 6 shows two stages of deformation for case 3. The viscosity
of the external medium is neglected, as in case 1, but the stiffness
of the inner shell increases when the maximum principal strain
exceeds 0.90. Compared with case 1, where Ei/Ea

i = 1 and
µi/µ

a
i = 1 for all values of strain, the rate of volume expansion

is reduced once the inner shell begins to escape from the outer
shell. For example, at p/Ea

i = 0.01382, the increased deformation
resistance at large strains reduces V/V0 = 12.2 for case 1 to
V/V0 = 7.1 for case 3. Even though Eb

i /E
a
i = 3, at large values of

V/V0, a maximum principal stress value equal to or greater than
Eb
i is attained and the calculation for case 3 eventually terminates

due to a numerical instability.
A more detailed picture of the evolution of the deformation

history is shown for case 4(eR = 3, µR = 32 and cN =

0.0343) in Fig. 7 where four configurations are shown. At t/ti =

28.9 in Fig. 7a the inner shell has bulged out a bit through the
opening but there is relatively little expansion of the outer shell
and, except for the bulging, the deformation of the rest of the
shell is nearly spherically symmetric. At the somewhat later time
t/ti = 35.5 in Fig. 7b, the bulging has increased considerably and
the increased pressure has led to a larger opening of the outer
shell. Relatively shortly after this, Fig. 7c, the two shells begin
to separate and the hatching process is essentially complete at
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Fig. 6. Deformed configurations for case 3, the calculation with θ0 = 47.0◦ , Eb
i /E

a
i = 3, µb

i /µ
a
i = 32 and c = 0. (a) V/V0 = 1.83, p/Ea

i = 0.0104, t/ti = 27.7. (b)
V/V0 = 6.21, p/Ea

i = 0.0136, t/ti = 36.2.
Fig. 7. Deformed configurations for case 4, the calculation with θ0 = 47.0◦ , Eb
i /E

a
i = 3, µb

i /µ
a
i = 32 and c = cN . (a) V/V0 = 1.91, p/Ea

i = 0.0108, t/ti = 28.9. (b)
/V0 = 3.99, p/Ea

i = 0.0133, t/ti = 35.5. (c) V/V0 = 5.68, p/Ea
i = 0.0142, t/ti = 37.8. (d) V/V0 = 8.68, p/Ea

i = 0.0167, t/ti = 44.4.
t
l
s
e
t

/ti = 44.4 in Fig. 7d. The time interval from the initiation of
eparation until complete separation is about 18% of the time
nterval from t/ti = 0 to t/ti = 44.4.

Comparing the results for cases 1 and 2 with those for cases
and 4 shows that the effect of the external medium viscosity
epends on the constitutive characterization of the inner shell.
or a ‘‘soft’’ inner shell as for cases 1 and 2, the viscosity of
 e

7

he external medium retards separation of the two shells and
eads to high stresses in the inner shell. When the inner shell
tiffens, as in cases 3 and 4, separation is favored over constrained
xpansion. Once the inner shell starts to escape, the viscosity of
he external medium reduces the effective pressure and a slow
xpansion continues.
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Fig. 8. Volume expansion, V/V0 versus normalized pressure, p/Ea
i , for two shells

ith θ0 = 21.5◦ and c = cN = 0.0343. The linear calculations are carried out
ith eR = Eb

i /E
a
i = 1 and µR = µb

i /µ
a
i = 1 while the nonlinear calculations

ave eR = Eb
i /E

a
i = 3 and µR = µb

i /µ
a
i = 32. All other parameters are the same

or the two calculations and are given in the text.

Fig. 8 shows the pressure volume response for two calcula-
ions with θ0 = 24.5◦ as in Fig. 2b (the opening consists of
1 elements), µa

o/µ
a
i = 32 and the normalized spring stiffness

s KRi/δnEi = 6.0 (all other parameters are the same as for
he calculations with θ0 = 47.0◦). In both calculations c =

N = 0.0343. The pressure at which the enclosed volume rapidly
ncreases is much greater than for the shells with θ0 = 47.0◦ due
o the increased constraint. A pressure of p/Ea

i = 0.02 is greater
han reached in any calculation shown in Fig. 3. For θ0 = 24.5◦

he difference between the maximum pressures attained in Fig. 8
nd that for an unconstrained shell is likely mainly due to the
onstraint provided by the outer shell.
Two stages of deformation are shown in Fig. 9 for an inner

hell with Eb
i /E

a
i = 1 and µb

i /µ
a
i = 1. As a consequence of

he increased stress level arising from the stronger constraint the
tress magnitudes become very large (relative to Eb

i = Ea
i ) and a

umerical instability occurs in an early stage of bulging prior to
ny separation.
Stiffening of the inner shell at large strains leads to a very
ifferent deformation history as shown in Fig. 10. At an early

8

tage of deformation, Fig. 10a, the deformation mode is much like
hat in Fig. 9b. The numerical instability is delayed due to the
ncreased stiffness at large strains and separation is beginning at
he stage shown in Fig. 10c. Escape is nearly complete in Fig. 10d.

Fig. 11 shows contours of the maximum principal Kirchhoff
tress, τ1, in the configuration shown in Fig. 10d. Although details
f the stress distribution cannot be seen because the shells are
hin, this plot shows that: (i) the stress distribution in the inner
hell (the blastocyst) is nonuniform; (ii) that the stresses are
elaxed in the outer shell (the zona pellucida) as the inner shell
scapes and (iii) the maximum principal stress magnitude over a
ignificant region of the inner shell is of the order of Eb

i . Shortly
fter the stage of deformation shown in Fig. 11, τ1 > Eb

i in the
nner shell and the calculation becomes numerically unstable.

At the stage in Fig. 10c t/ti = 103.9, while in Fig. 10d is
/ti = 107.6. Thus, the time interval over which escape occurs
ith θ0 = 24.5◦ is about 4% of the total time interval as compared
ith 18% when θ0 = 47.0◦. Thus, after a relatively long, opening-
ize dependent, period of bulging the inner shell ‘‘pops’’ out. This
s qualitatively consistent with the observation in Ref. [17] that
nce a blastocyst hatches out more than halfway the embryo
merges rather quickly and then expands rapidly.
To illustrate the predicted time for hatching, we set tai =

µa
i /2E

a
i = 20min, which if we take Ea

i = 7KPa corresponds
to µa

i = 93.3KPa-min. Then, separation of the inner shell (the
blastocyst) in Fig. 7d where θ0 = 47.0◦ occurs in 14.8 h whereas
for the case with θ0 = 24.5◦ in Fig. 10d separation occurs in
35.8 h. This illustrates the strong effect of the opening size and of
the deformation resistance of the outer shell (the zona pellucida)
on the time for hatching.

4. Concluding remarks

We have developed a continuum mechanics modeling frame-
work for simulating the hatching of a blastocyst from the zona
pellucida. Calculations carried out within that framework repro-
duce, at least qualitatively, some features observed experimen-
tally, such as hatching consisting of a long time period where part
of the blastocyst bulges out of the opening in the zona pellucida
prior to hatching. While simplified, our modeling framework can
predict trends for the dependence of hatching on geometrical and
material parameters as well as make quantitative predictions for
specific cases. Hopefully, these will be helpful for developing a
predictive theory of the mechanics of hatching. For example, our

model can make qualitative and quantitative predictions of the
Fig. 9. Deformed configurations for the calculation with θ0 = 24.5◦ , Eb
i /E

a
i = 1, µb

i /µ
a
i = 1 and c = cN . (a) V/V0 = 1.28, p/Ea

i = 0.0164, t/ti = 43.7. (b) V/V0 = 2.16,
p/Ea

i = 0.0221, t/ti = 59.0.



V. Tvergaard, D. Needleman and A. Needleman Extreme Mechanics Letters 42 (2021) 101132

c

Fig. 10. Deformed configurations for the calculation with θ0 = 24.5◦ , Eb
i /E

a
i = 3, µb

i /µ
a
i = 32 and c = cN . (a) V/V0 = 1.75, p/Ea

i = 0.0235, t/ti = 62.7. (b)
V/V0 = 5.80, p/Ea

i = 0.0371, t/ti = 99.0. (c) V/V0 = 7.33, p/Ea
i = 0.0390, t/ti = 103.9. (d) V/V0 = 12.40, p/Ea

i = 0.0403, t/ti = 107.6.
Fig. 11. Distribution of maximum principal Kirchhoff stress τ1 in the deformed
onfiguration for the calculation with θ0 = 24.5◦ , Eb

i /E
a
i = 3, µb

i /µ
a
i = 32 and

c = cN at V/V0 = 12.40, p/Ea
i = 0.0403, t/ti = 107.6.

dependence of the time evolution of the hatching process, includ-

ing whether or not hatching is successful, on the size of the zona

9

pellucida opening and on the constitutive characterization of the
blastocyst and of the zona pellucida. The results presented here
show a strong effect of material nonlinearity on the predicted
hatching process. Also, the evolution of the shape and thickness
of both the blastocyst and the zona pellucida is predicted.

In our model the constraint of the outer shell (the zona pellu-
cida) significantly increases stress levels in the inner shell (the
blastocyst), as was also suggested in Ref. [4]. This constraint,
coupled with the opening in the outer shell, leads to a non-
uniform stress distribution in the inner shell. This contrasts with a
blastocyst membrane model that gives a uniform stress distribu-
tion. The stress distribution could be important for understanding
the evolution of cell shape and size in the blastocyst. Our results
illustrate predictions for the dependence of the stress levels at-
tained on the constitutive characterization of the inner shell and
of the outer shell as well as on the viscosity of the surrounding
medium and on the size of the opening in the outer shell.

The observed response of the blastocyst typically displays
cycles of expansion and collapse, see for example [4,18], the
possibility of which is not included in the constitutive description
used in our calculations. However, the large local stresses that
occur in our calculations could induce cell separation which could
in turn initiate collapse. A multi-axial constitutive description
incorporating cyclic collapse and expansion could be incorporated
into our framework.

An important aspect of our modeling framework is that it
is extensible. Improved constitutive descriptions, an improved
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odel of the interface between the blastocyst and the zona
ellucida, and an improved model of the interaction between the
lastocyst/zona pellucida structure with the surrounding viscous
edium can be incorporated. Also, we have presumed that the
pening is fixed during the hatching process. An evolution equa-
ion for the development of the opening during hatching could
e incorporated. A quantitative experimental characterization of
he deformation history during hatching is needed to assess the
redictive capability of the modeling and to identify the key
eatures of the model that need to be improved.
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